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Foreword

These notes accompany the newly revised (Spring 2019 to current) version of AA 203: Op-
timal and Learning-Based Control at Stanford. The goal of this new course is to present a
unified treatment of optimal control and reinforcement learning (RL), with an emphasis on
model-based reinforcement learning. The goal of the instructors is to unify the subjects as
much as possible, and to concretize connections between these research communities.

How is this course different from a standard class on Optimal Control? First, we
will emphasize practical computational tools for real world optimal control problems, such
as model predictive control and sequential convex programming. Beyond this, the last third
of the course focuses on the case in which an exact model of the system is not available. We
will discuss this setting both in the online context (typically referred to as adaptive optimal
control) and in the episodic context (the typical setting for reinforcement learning).

How is this course different from a standard class on Reinforcement Learning?
Many courses on reinforcement learning focus primarily on the setting of discrete Markov
Decision Processes (MDPs), whereas we will focus primarily on continuous MDPs. More
importantly, the focus on discrete MDPs leads planning with a known model (which is
typically referred to as “planning” or “control” in RL) to be relatively simple. In this
course, we will spend considerably more time focusing on planning with a known model
in both continuous and discrete time. Finally, the focus of this course will primarily be
on model-based methods. We will touch briefly on model-free methods at the end, and
combinations of model-free and model-based approaches.

A Note on Notation

The notation and language used in the control theory and reinforcement learning commu-
nities vary substantially, as so we will state all of the notational choices we make in this
section. First, optimal control problems are typically stated in terms of minimizing a cost
function, whereas reinforcement learning problems aim to maximize a reward. These are
mathematically identical statements, where one is simply the negation of the other. Herein,
we will use the control theoretic approach of cost minimization. We write c for the cost
function, f for the system dynamics, and denote the state and action at time t as xt and ut
respectively. We write scalars as lower case letters, vectors as bold lower case letters, and
matrices as upper case letters. We write a deterministic policy as π(x), and a stochastic
policy as π(u | x). We write the cost-to-go (negation of the value function) associated with
policy π at time t and state x as Jπt (x). We will also sometimes refer to the cost-to-go as
the value, but in these notes we are always referring to the expected sum of future costs.
For an in-depth discussion of the notational and language differences between the artificial
intelligence and control theory communities, we refer the reader to [Pow12].

For notational convenience, we will write the Hessian of a function f(x), evaluated at x∗,
as ∇2f(x∗).
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Prerequisites

While these notes aim to be almost entirely self contained, familiarity with undergraduate
level calculus, differential equations, and linear algebra (equivalent to CME 102 and EE 263
at Stanford) are assumed. We will briefly review nonlinear optimization in the first section
of these notes, but previous experience with optimization (e.g. EE 364A) will be helpful.
Finally, previous experience with machine learning (at the level of CS 229) is beneficial.

Omissions

This course (and these notes) aim to cover the content of at least three distinct fields, each
with many papers published every year1. As a consequence, we skip over many topics. At
present, we avoid covering:

• Motion planning beyond trajectory optimization, including sampling-based mo-
tion planning. For this we refer the reader to the excellent book by LaValle [LaV06].

• Lyapunov analysis and stability analysis in adaptive control. We refer the
reader to [ÅW13, IS12].

• Imitation learning.
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1We primarily include references to literature in adaptive control, optimal control, and reinforcement
learning, but related work is also published in economics, neuroscience, operations research and quantitative
finance, as well as many other fields and sub-fields.
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Chapter 1

Nonlinear Optimization

In this section we discuss the generic nonlinear optimization problem that forms the basis
for the rest of the material presented in this class. We write the minimization problem as

min
x∈X

f(x)

where f is the cost function, usually assumed twice continuously differentiable, x ∈ Rn is the
optimization variable, and X ⊂ Rn is the constraint set. The special case in which the cost
function is linear and the constraint set is specified by linear equations and/or inequalities
is linear optimization, which we will not discuss.

1.1 Unconstrained Nonlinear Optimization

We will first address the unconstrained case, in which X = Rn. A vector x∗ is said to be an
unconstrained local minimum if there exists ε > 0 such that f(x∗) ≤ f(x) for all x ∈ {x |
‖x − x∗‖ ≤ ε}, and x∗ is said to be an unconstrained global minimum if f(x∗) ≤ f(x) for
all x ∈ Rn.

1.1.1 Necessary Conditions for Optimality

For a differentiable cost function, we can compare the cost of a point to its neighbors by
considering a small variation ∆x from x∗. By using Taylor expansions, this yields a first
and second order cost variation

f(x∗ + ∆x)− f(x∗) ≈ ∇f(x∗)T∆x+
1

2
∆xT∇2f(x∗)∆x. (1.1)

Setting ∆x to be equal to positive and negative multiples of the unit coordinate vector, we
have

∂f(x∗)

∂xi
≥ 0 (1.2)
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Figure 1.1: An example of a function for which the necessary conditions of optimality are
satisfied but the sufficient conditions are not.

where xi denotes the i’th coordinate of x, and

∂f(x∗)

∂xi
≤ 0 (1.3)

for all i, which is only satisfied by ∇f(x∗) = 0. This is referred to as the first order necessary
condition for optimality. Looking at the second order variation, and noting that ∇f(x∗) = 0,
we expect

f(x∗ + ∆x)− f(x∗) ≥ 0 (1.4)

and thus

∆xT∇2f(x∗)∆x ≥ 0 (1.5)

which implies ∇2f(x∗) is positive semidefinite. This is referred to as the second order
necessary condition for optimality. Stating these conditons formally,

Theorem 1.1.1 (Necessary Conditions for Optimality (NOC)). Let x∗ be an unconstrained
local minimum of f : Rn → R and f ∈ C1 in an open set S containing x∗. Then,

∇f(x∗) = 0. (1.6)

If f ∈ C2 within S, ∇2f(x∗) is positive semidefinite.

Proof. See section 1.1 of [Ber16].

1.1.2 Sufficient Conditions for Optimality

If we strengthen the second order condition to ∇2f(x∗) being positive definite, we have
the sufficient conditions for x∗ being a local minimum. Why is the second order necessary
conditions not sufficient? An example function is given in figure 1.1. Formally,
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Theorem 1.1.2 (Sufficient Conditions for Optimality (SOC)). Let f : Rn → R be C2 in an
open set S. Suppose a vector x∗ satisfies the conditions ∇f(x∗) = 0 and ∇2f(x∗) is positive
definite. Then x∗ is a strict unconstrained local minimum of f .

Proof is again given in Section 1.1 of [Ber16]. There are several reasons why the optimality
conditions are important. In a general nonlinear optimization setting, they can be used to
filter candidates for global minima. They can be used for sensitivity analysis, in which the
sensitivity of x∗ to model parameters can be quantified [Ber16]. This is common in e.g.
microeconomics. Finally, these conditions often provide the basis for the design and analysis
of optimization algorithms.

1.1.3 Special case: Convex Optimization

A special case within nonlinear optimization is the set of convex optimization problems. A
set S ⊂ Rn is called convex if

αx+ (1− α)y ∈ S, ∀x,y ∈ S,∀α ∈ [0, 1]. (1.7)

For S convex, a function f : S → R is called convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (1.8)

This class of problems has several important characteristics. If f is convex, then

• A local minimum of f over S is also a global minimum over S. If in addition f is strictly
convex (the inequality in (1.8) is strict), there exists at most one global minimum of
f .

• If f ∈ C1 and convex, and the set S is open, ∇f(x∗) = 0 is a necessary and sufficient
condition for a vector x∗ ∈ S to be a global minimum over S.

Convex optimization problems have several nice properties that make them (usually) compu-
tationally efficient to solve, and the first property above gives a certificate of having obtained
global optimality that is difficult or impossible to obtain in the general nonlinear optimiza-
tion setting. For a thorough treatment of convex optimization theory and algorithms, see
[BV04].

1.1.4 Computational Methods

In this subsection we will discuss the class of algorithms known as gradient methods for
finding local minima in nonlinear optimization problems. These approaches, rely (roughly)
on following the gradient of the function “downhill”, toward the minima. More concretely,
these algorithms rely on taking steps of the form

xk+1 = xk + αkdk (1.9)
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where if ∇f(x) 6= 0, dk is chosen so that

∇f(x)Tdk < 0 (1.10)

and α > 0. Typically, the step size αk is chosen such that

f(xk + αkdk) < f(xk), (1.11)

but generally, the step size and the direction of descent (dk) are tuning parameters.
We will look at the general class of descent directions of the form

dk = −Dk∇f(xk) (1.12)

where Dk > 0 (note that this guarantees ∇f(xk)Tdk < 0).

Steepest descent, Dk = I. The simplest choice of descent direction is directly following
the gradient, and ignoring second order function information. In practice, this often leads
to slow convergence (figure 1.2a) and possible oscillation (figure 1.2b).

Newton’s Method, Dk = (∇2f(xk))−1. The underlying idea of this approach is to at
each iteration, minimize the quadratic approximation of f around xk,

fk(x) = f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk). (1.13)

Setting the derivative of this to zero, we obtain

∇f(xk) +∇2f(xk)(x− xk) = 0 (1.14)

and thus, by setting xk+1 to be the x that satisfies the above, we get the

xk+1 = xk − (∇2f(xk))−1∇f(xk) (1.15)

or more generally,
xk+1 = xk − α(∇2f(xk))−1∇f(xk). (1.16)

Note that this update is only valid for ∇2f(xk) � 0. When this condition doesn’t hold, xk+1

is not a minimizer of the second order approximation (as a result of the SOCs). See figure
1.2d for an example where Newton’s method converges in one step, as a result of the cost
function being quadratic.

Diagonally scaled steepest descent, Dk = diag(dk1, . . . , d
k
n). Have dki > 0∀i. A popular

choice is

dki =

(
∂2f(xk)

∂x2
i

)−1

(1.17)

which is a diagonal approximation of the Hessian
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(a) Steepest descent, small fixed step size. (b) Steepest descent, large fixed step size.

(c) Steepest descent, step size chosen via line
search.

(d) Newton’s method. Note that the method
converges in one step.

Figure 1.2: Comparison of steepest descent methods with various step sizes, and Newton’s
method, on the same quadratic cost function.

Modified Newton’s method, Dk = (∇2f(x0))−1. Requires ∇2f(x0) > 0. For cases in
which one expects ∇2f(x0) ≈ ∇2f(xk), this removes having to compute the Hessian at each
step.

In addition to choosing the descent direction, there also exist a variety of methods to
choose the step size α. A computationally intensive but efficient (in terms of the number of
steps taken) is using a minimization rule of the form

αk = argminα≥0f(xk + αdk) (1.18)

which is usually solved via line search (figure 1.2c). Alternative approaches include a limited
minimization rule, in which you constrain αk ∈ [0, s] during the line search, or simpler ap-
proach such as a constant step size (which may not guarantee convergence), or a diminishing
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scheduled step size. In this last case, schedules are typically chosen such that αk → 0 as
k →∞, while

∑∞
k=0 α

k = +∞.

1.2 Constrained Nonlinear Optimization

In this section we will address the general constrained nonlinear optimization problem,

min
x∈X

f(x)

which may equivalently be written

min
x

f(x)

s.t. x ∈ X

where the set X is usually specified in terms of equality and inequality constraints. To
operate within this problem structure, we will develop a set of optimality conditions involving
auxiliary variables called Lagrange multipliers.

1.2.1 Equality Constrained Optimization

We will first look at optimization with equality constraints of the form

min
x

f(x)

s.t. hi(x) = 0, i = 1, . . . ,m

where f : Rn → R, hi : Rn → R are C1. We will write h = [h1, . . . , hm]T . For a given local
minimum x∗, there exist scalars λ1, . . . , λm called Lagrange multipliers such that

∇f(x∗) +
m∑
i=1

λi∇hi(x∗) = 0. (1.19)

There are several possible interpretations for Lagrange multipliers. First, note that the cost
gradient f(x∗) is in the subspace spanned by the constraint gradients at x∗. Equivalently,
f(x∗) is orthogonal to the subspace of first order feasible variations

V (x∗) = {∆x | ∇hi(x∗)T∆x = 0, i = 1, . . . ,m}. (1.20)

This subspace is the space of variations ∆x for which x = x∗ + ∆x satisfies the constraint
h(x) = 0 up to first order. Therefore, at a local minimum, the first order cost variation
∇f(x∗)T∆x is zero for all variations ∆x in this space.

Given this informal understanding, we may now precisely state the necessary conditions
for optimality in constrained optimization.
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Theorem 1.2.1 (NOC for equality constrained optimization). Let x∗ be a local minimum of
f subject to h(x) = 0, and assume that the constraint gradients ∇h1(x∗), . . . ,∇hm(x∗) are
linearly independent. Then there exists a unique vector λ∗ = [λ∗1, . . . , λ

∗
m]T called a Lagrange

multiplier vector, such that

∇f(x∗) +
m∑
i=1

λi∇hi(x∗) = 0. (1.21)

If in addition f and h are C2, we have

yT (∇2f(x∗) +
m∑
i=1

λi∇2hi(x
∗))y ≥ 0, ∀y ∈ V (x∗) (1.22)

where
V (x∗) = {y | ∇hi(x∗)Ty = 0, i = 1, . . . ,m}. (1.23)

Proof. See [Ber16] Section 3.1.1 and 3.1.2.

We will sketch two possible proofs for the NOC for equality constrained optimization.

Penalty approach. This approach relies on adding a to the cost function a large penalty
term for constraint violation. This is the same approach that will be used in proving the
necessary conditions for inequality constrained optimization, and is the basis of a variety of
practical numerical algorithms.

Elimination approach. This approach views the constraints as a system of m equations
with n unknowns, for which m variables can be expressed in terms of the remaining m− n
variables. This reduces the problem to an unconstrained optimization problem.

Note that in theorem 1.2.1, we assumed the gradients of the constraint functions were
linearly independent. A feasible vector for which this holds is called regular. If this condition
is violated, a Lagrange multiplier for a local minimum may not exist.

For convenience, we will write the necessary conditions in terms of the Lagrangian func-
tion L : Rm+n → R,

L(x,λ) = f(x) +
m∑
i=1

λihi(x). (1.24)

This function allows the NOC conditions to be succinctly stated as

∇xL(x∗,λ∗) = 0 (1.25)

∇λL(x∗,λ∗) = 0 (1.26)

yT∇2
xxL(x∗,λ∗)y ≥ 0, ∀y ∈ V (x∗). (1.27)

which form a system of n+m equations with n+m unknowns. Given this notation, we can
state the sufficient conditions.
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Theorem 1.2.2 (SOC for equality constrained optimization). Assume that f and h are C2

and let x∗ ∈ Rn and λ∗ ∈ Rm satisfy

∇xL(x∗,λ∗) = 0 (1.28)

∇λL(x∗,λ∗) = 0 (1.29)

yT∇2
xxL(x∗,λ∗)y > 0, ∀y 6= 0,y ∈ V (x∗). (1.30)

Proof. See [Ber16] Section 3.2.

Note that the SOC does not include regularity of x∗.

1.2.2 Inequality Constrained Optimization

We will now address the general case, including inequality constraints,

min
x

f(x)

s.t. hi(x) = 0, i = 1, . . . ,m

gj(x) ≤ 0, j = 1, . . . , r

where f, hi, gi are C1. The key intuition for the case of inequality constraints is based on
realizing that for any feasible point, some subset of the constraints will be active (for which
gj(x) = 0), while the complement of this set will be inactive. We define the active set of
inequality constraints, which we denote

A(x) = {j | gj(x) = 0}. (1.31)

A constraint is active at x if it is in A(x), otherwise it is inactive. Note that if x∗i is a
local minimum of the inequality constrained problem, then x∗ is a local minimum of the
identical problem with the inactive constraints removed. Moreover, at this local minimum,
the constraints may be treated as equality constraints. Thus, if x∗ is regular, there exists
Lagrange multipliers λ∗1, . . . , λ

∗
m and µ∗j , j ∈ A(x∗) such that

∇f(x∗) +
m∑
i=1

λi∇hi(x∗) +
∑

j∈A(x∗)

µ∗j∇gj(x∗) = 0. (1.32)

We will define the Lagrangian

L(x,λ,µ) = f(x) +
m∑
i=1

λihi(x) +
r∑
j=1

µjgj(x), (1.33)

which we will use to state the necessary and sufficient conditions.
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Theorem 1.2.3 (Karush-Kuhn-Tucker NOC). Let x∗ be a local minimum for the inequality
constrained problem where f, hi, gj are C1 and assume x∗ is regular (equality and active
inequality constraint gradients are linearly independent). Then, there exists unique Lagrange
multiplier vectors λ∗ and µ∗ such that

∇xL(x∗,λ∗,µ∗) = 0 (1.34)

µ ≥ 0 (1.35)

µ∗j = 0, ∀j /∈ A(x∗) (1.36)

If in addition, f,h, g are C2, we have

yT∇2
xxL(x∗,λ∗,µ∗)y ≥ 0 (1.37)

for all y such that

∇hi(x∗)Ty = 0, i = 1, . . . ,m (1.38)

∇gj(x∗)Ty = 0, j ∈ A(x∗) (1.39)

Proof. See [Ber16] Section 3.3.1.

The SOC are obtained similarly to the equality constrained case.

1.3 Bibliographic Notes

In this section we have addressed the necessary and sufficient conditions for constrained and
unconstrained nonlinear optimization. This section is based heavily on [Ber16], and we refer
the reader to this book for further details. We have avoided discussing linear programming,
which is itself a large topic of study, about which many books have been written (we refer
the reader to [BT97] as a good reference on the subject).

Convex optimization has become a powerful and widespread tool in modern optimal
control. While we have only addressed it briefly here, [BV04] offers a fairly comprehensive
treatment of the theory and practice of convex optimization. For a succinct overview with
a focus on machine learning, we refer the reader to [Kol08].
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Chapter 2

Optimal Control and Dynamic
Programming

In this section we will introduce the fundamental concepts of optimal control in discrete
and continuous time. In particular, we introduce the principle of optimality, which enables
dynamic programming. Dynamic programming allows us to solve optimal control problems
by recursively solving sub-problems, and this approach is (arguably) the most important
concept in our study of optimal control. In addition to studying dynamic programming
and the principle of optimality in discrete and continuous time for both deterministic and
stochastic systems, we will introduce optimal control algorithms for discrete state spaces.

2.1 The Optimal Control Problem

2.1.1 Optimal Control in Continuous Time

We will first outline the deterministic, continuous-time optimal control problem that we will
aim to solve, before moving on to alternative problem statements including stochasticity
and discrete-time. We will denote the state at time t as x(t) ∈ Rn, and the control as
u(t) ∈ Rm. We will also occasionally write these as xt and ut, respectively. We will write
the continuous-time systems dynamics as

ẋ(t) = f(x(t),u(t), t). (2.1)

We will refer to a history of control input values during an interval [t0, tf ] as a control history,
and we will refer to a history of state values over this interval as a state trajectory.

Different control problems may call for various constraints. For example, we may con-
strain a quadrotor to only fly in space not occupied by obstacles. Examples of constraints
we will see are

• Initial and final conditions, x(t0) = x0, x(tf ) = xf

• Trajectory constraints,
¯
x ≤ x(t) ≤ x̄
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• Control limits,
¯
u ≤ u(t) ≤ ū.

A state trajectory and control history that satisfy the constraints during the entire time
interval [t0, tf ] are called admissible trajectories and admissible controls, respectively.

Finally, we will define the performance measure,

J = cf (x(tf ), tf ) +

∫ tf

t0

c(x(t),u(t), t)dt (2.2)

where c is the instantaneous cost function, and cf is the terminal state cost. We are now able
to state the continuous-time optimal control problem. We aim to find an admissible control,
u∗, which causes the system (2.1) to follow an admissible trajectory, x∗, that minimizes the
performance measure given by (2.2). The minimizer (x∗,u∗) is called an optimal trajectory-
control pair.

Note, first of all, that this is an extremely general problem formulation. We have not fixed
our system dynamics, cost function, or specific constraints. We can’t, in general, guarantee
the existence or uniqueness of the optimal solution.

There are two possible solution forms for the optimal control. The first, u∗ = e(x(t0), t)
is referred to as an open-loop solution. This is an input function that is applied to the
system, without using feedback. Practically, such solutions usually require augmentation
with a feedback controller, as small model mismatch may lead to compounding errors. The
second possible solution form is a feedback policy, u∗ = π(x(t), t). This feedback law maps
all state-time pairs to an action and thus is usually more robust to possible model mismatch.
However, depending on the particular problem formulation, open-loop solutions may be
easier to compute.

2.1.2 Optimal Control in Discrete Time

In the previous section, we have developed an optimal control problem statement in contin-
uous time. This approach to system modeling is likely familiar to readers coming from a
background in the physical sciences; in particular, physical models from mechanical and elec-
trical engineering will often be stated as differential equations, and so a problem formulation
in continuous time is natural. Readers from backgrounds in computer science or operations
research on the other hand may be more familiar with dynamics expressed as discrete time
difference equations. Moreover, such an approach is more natural for implementation on
a digital computer, and thus fluency mapping between these two settings is an important
skill. Finally, while work in the optimal control literature discusses both the continuous and
discrete time case, the literature in reinforcement learning and artificial intelligence typically
presents problems in discrete time.

We will index time with k, where one increment of this index is equal to some increment
of time ∆t. Thus, xk = x(k∆t). We will write N for the final time. Then, we will write our
system dynamics as

xk+1 = fk(xk,uk) (2.3)
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and our performance measure as

J = cN(xN) +
N−1∑
k=0

c(xk,uk, k) (2.4)

where c is now a stage-wise cost function, cN is a terminal cost function, and the integral of
the continuous time formulation is replaced with a sum.

2.1.3 Markovian Decision Problems

Before moving to the principle of optimality, we will formalize the setting in which we will
operate for the duration of this class. In particular, we will outline Markovian decision
problems, variations in their presentation, as well as extensions of this framework. We will
first discuss the perfect state information case, in which the system state summarizes the
full history of the system. We will then briefly discuss the imperfect state information case.
Typically, finding optimal solutions in this case is much harder than in the perfect state
information case. We will introduce the incomplete state information setting only briefly,
and in the next chapter we will discuss one practical case in which the imperfect case can
be solved effectively.

MDPs

We present the Markov decision process in discrete time, and the continuous time case
will looks similar. The fundamental idea behind Markov Decision Processes (MDPs) is
that the state dynamics are Markovian, or obey the Markov property. This property says
that all information about the previous history of the system is summarized by its current
state. While we have so far considered deterministic dynamics, we will consider probabilistic
dynamics of the form

xk+1 = fk(xk,uk,ωk) (2.5)

where ωk is a stochastic disturbance, with ωj independent of ωi for i 6= j. This noise term
at time k may depend on the state and action at time k, but it is independent of the state
and action at other time steps. This noise is typically referred to as the process noise. Given
this probabilistic dynamics model, we can reason about our conditional distribution of xk+1

given our current state xk and action uk, which we will write p(xk+1 | xk,uk). Let

hk = (x0,u0, c0, . . . ,xk,uk) (2.6)

where ci is the accrued cost at timestep i. Then, a system is said to be Markovian if

p(xk+1 | xk,uk) = p(xk+1 | hk). (2.7)

In addition to Markovian dynamics, we require an additive cost function, c(xk,uk, k).
Finally, we will define the state space X and action space U , such that xk ∈ X , uk ∈ U
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for all k. Given these ingredients, we will define the Markov decision process as the tuple
(X ,U ,f , c).

Are these ingredients sufficient to completely define the optimal control problem intro-
duced in the last section? Or equivalently, given the elements of this tuple, can we specify
everything about an optimal control problem? The answer is no: we have not included the
constraints (for example, control constraints), the final time, or the initial state. Are these
elements necessary for the specification of an optimal control problem? We will break these
elements down individually.

Constraints. The control literature frequently includes constraints in the optimal control
problem setting. For example, control limits are necessary to ensure commanded actions
are physically realizable. In contrast, the artificial intelligence community typically does
not consider constraints. For deterministic dynamics, we can include constraints in the
cost function: if a constraint is violated, a cost of ∞ is returned. Such an approach is
common in the literature on optimization [BV04]. However, this leads to a problem in the
stochastic case. Imagine some deterministic dynamics with an additive Gaussian noise term.
If we impose state constraints on this system, the infinite support of the Gaussian noise
will lead to a non-zero probability of constraints violation at every time step. The tension
between stochastic dynamics and constraints is resolved in part by the constrained MDP
formulation [Alt99], in which a budget on constraint violation is allowed. The objective,
then, is satisfying the constraint violation budget while minimizing the cost. Generally,
however, designing meaningful constraints with stochastic dynamics is an active research
problem in the control community.

Final time. A final time may be desired by a system designer, and thus they may choose
to include this in their optimal control problem. But, is it necessary to include? Imagine
an infinite-horizon optimal control problem, in which we plan a feedback policy that will
execute for all time. If there exists a state that the system can reach with finite cost, for
which the cost for the rest of the problem is finite (for example, a state for which we can
achieve zero cost for the rest of time), then the total cost will be finite. If this is not satisfied,
then the total cost is infinite. This is problematic, as it removes the ability to distinguish
between different control policies, as both will receive the same (infinite) total cost. This can
be resolved in several ways. As discussed in the previous section, we can limit the problem
setting to a finite final time. In the infinite horizon case, we could also scale the cost accrued
at each timestep so that the total cost is finite. One approach is discounting, in which cost
is scaled by a time-varying term. An alternative (but less common) approach is to consider
average cost, as opposed to total cost.

Initial State. In the optimal control problem defined previously, we assumed knowledge
of the initial state. This knowledge is important if we are designing an open-loop sequence
of controls. If we are searching for an optimal control policy, we do not require the initial
state, as we will find a policy that is optimal for all states. The difference between these two
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Figure 2.1: An optimal trajectory connecting point a to point c. There are no better (lower
cost) trajectories than the sub-trajectory connecting b and c, by the principle of optimality.

approaches will be discussed in depth later in this section. In reinforcement learning where
you assume episodic interaction with a system, it is typical to assume a known initial state
or a distribution over initial states. This is important as these algorithms typically result in
sub-optimal control policies that perform better close to the regions of the state space where
they have observed data, and perform worse further from their previous experience.

2.2 Dynamic Programming and the Principle of Opti-

mality

We will now outline the principle of optimality, and the method of dynamic programming
(DP), one of two main approaches to solving the optimal control problem. The second,
so-called variational approaches based on Pontryagin’s Maximum Principle (PMP) will be
discussed in future chapters. While dynamic programming has the strong advantage com-
pared to variational methods of yielding a feedback policy, exactly solving the dynamic
programming problem is infeasible for many systems. We will address special cases in which
the DP problem can be solved exactly, and approximate methods that work for a wide va-
riety of systems. In particular, in this chapter we will discuss exhaustive approaches to
dynamic programming for discrete state space problems; such methods may be used as an
approximation method for continuous state space problems. In the next chapter we discuss a
special case in which dynamic programming is tractable for continuous state spaces. Again,
this special case is used for useful approximations for intractable problems. We will first
introduce DP for discrete time systems, before extending these methods to the continuous
time setting in the next section.

2.2.1 Dynamic Programming and the Principle of Optimality

The principle of optimality is as follows. Figure 2.1 shows a trajectory from point a to
c. If the cost of the trajectory, Jac = Jab + Jbc, is minimal, then Jbc is also a minimum
cost trajectory connecting b and c. The proof of this principle, stated informally, is simple.
Assume there exists an alternative trajectory connecting b and c, for which we will write the

25



cost as J̃bc, that achieves J̃bc < Jbc. Then, we have

J̃ac = Jab + J̃bc (2.8)

< Jab + Jbc (2.9)

= Jac, (2.10)

and thus Jac isn’t minimal. More formally,

Theorem 2.2.1 (Discrete-time Principle of Optimality: Deterministic Case). Let π∗ =
(π∗0, . . . , π

∗
N−1) be an optimal policy. Assume state xk is reachable. Consider the subproblem

whereby we are at xk at time k and we wish to minimize the cost-to-go from time k to time
N . Then the truncated policy (π∗k, . . . , π

∗
N−1) is optimal for the subproblem.

Dynamic programming, intuitively, proceeds backwards in time, first solving simpler
shorter horizon problems. If we have found the optimal policy for times k + 1 to N − 1,
along with the associated cost-to-go for each state, choosing the optimal policy for time k is
a one step optimization problem. More concretely, dynamic programming iterates backward
in time, from N − 1 to 0, with

JN(xN) = cN(xN) (2.11)

Jk(xk) = min
uk∈U(xk)

{ck(xk,uk, k) + Jk+1(f(xk,uk, k))} . (2.12)

Note that here we have considered only deterministic dynamical systems (there is no stochas-
tic disturbance). Equation (2.12) is one form of the Bellman equation, one of the most impor-
tant relations in optimal control. Critically, this approach changes the optimization problem
associated with the optimal control problem from one in which optimization is performed
over a sequence of actions of length N , to a collection of N one step optimization problems.

Dynamic programming raises many practical issues if one were to attempt to apply it
directly in general. To perform the recursion, Jk+1 must be known for all xk+1 (or more
precisely, all xk+1 that are reachable from xk). If the state space is discrete (and relatively
small), this is tractable as the cost-to-go may just be maintained in tabular form. We will
address this case later in this section. However, for general systems, we can not expect to be
able to compute the cost-to-go for all states. Possible approaches to make the DP approach
tractable are discretizing the state space, approximating the cost-to-go (i.e. restricting the
family of functions that Jk+1 may be in), or interpolating between cost-to-go computed for
a finite set of states.

2.2.2 Generalizing the Principle of Optimality: Stochastic Case

We consider systems of the form

xk+1 = fk(xk,uk,ωk), k = 0, . . . , N − 1 (2.13)
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where ωk ∼ p(· | xk,uk) is the disturbance or noise. We write the expected cost under policy
π = {π0, . . . , πN−1} as

Jπ(x0) = Eω0:N−1

[
cN(xN) +

N−1∑
k=0

ck(xk, πk(xk),ωk)

]
. (2.14)

Then, the stochastic control problem we wish to solve is to find

J∗(x0) = min
π
Jπ(x0). (2.15)

In contrast to the deterministic optimal control problem, we are specifically interested in
finding the optimal closed-loop policy in the stochastic case. Closed-loop policies can achieve
lower cost than open-loop action sequences when disturbances are present, as they take
advantage of current state information in their action selection. Thus, if disturbances cause
a system to leave the nominal open-loop trajectory, a policy will continue to act optimally
from that new state, whereas an open-loop sequence of actions will potentially act sub-
optimally.

We can now state the principle of optimality for the stochastic optimal control problem.
Note that this is a strict generalization of the deterministic case.

Theorem 2.2.2 (Discrete-time Principle of Optimality: Stochastic Case). Let π∗ = (π∗0, . . . , π
∗
N−1)

be an optimal policy. Assume state xk is reachable. Consider the tail subproblem

Ewi:N−1

[
cT (xN) +

N−1∑
k=i

ck(xk, πk(xk),ωk)

]
. (2.16)

Then the truncated policy (π∗i , . . . , π
∗
N−1) is optimal for the subproblem.

The intuition behind the stochastic principle of optimality is effectively the same as for
the deterministic, and the proof is also based on decomposition of the total cost into two
cost terms. This is possible due to the linearity of expectation. Stated simply, if a better
policy existed for the tail problem, this would imply π∗ is suboptimal.

The stochastic version of the principle of optimality leads to a concomitant dynamic
programming algorithm, which takes the form

JN(xN) = cN(xN) (2.17)

Jk(xk) = min
uk∈U(xk)

Eωk [ck(xk,uk,ωk) + Jk+1(f(xk,uk,ωk))] (2.18)

and the optimal policy is

π∗k(xk) = argminuk∈U(xk)Eωk [ck(xk,uk,ωk) + Jk+1(f(xk,uk,ωk))] . (2.19)
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2.3 Optimal Control with Incomplete State Informa-

tion

In the definition of the Markov decision process, we assumed two necessary features of
the dynamics. First, we assumed the dynamics were Markovian; the state contained all
information about the history of the system. Second, we assumed that we could directly
observe the state of the system (the perfect information assumption. We now consider
the case in which direct, perfect state information isn’t available, which we refer to as the
imperfect state information setting. We have noise-corrupted measurements

yk = hk(xk,νk), k = 0, . . . , N − 1 (2.20)

where νk is a noise term which we refer to as the measurement noise. This measurement
noise is characterized by distribution

p(· | xk, . . . ,x0,uk−1, . . . ,u0,ωk−1, . . . ,ω0,νk−1, . . . ,ν0) (2.21)

and the initial state x0 is distributed according to p(x0). We will define the information
vector as

ik = [yT0 , . . . ,y
T
k ,u

T
0 , . . . ,u

T
k−1]T . (2.22)

Note that this information vector contains all information directly observable to the decision-
making agent at timestep k. Armed with this, we will consider admissible policies π(ik) ∈ Uk,
which implies they are causal — they do not rely on information only available in the future.
The goal of the control problem, then is to minimize

Ex0,ω0:N−1,ν0:N−1

[
cT (xN) +

N−1∑
k=0

c(xk, π(ik),ωk)

]
. (2.23)

Given this objective, we may state the dynamic programming equation in terms of informa-
tion vectors

Jk(ik) = min
uk∈Uk

Exk,ωk,yk+1
[ck(xk,uk,ωk) + Jk+1(ik+1) | ik,uk] (2.24)

This dynamic programming recursion replaces the state with the information vector (which
itself summarizes all information about the problem), but otherwise proceeds as normal.
However, using this DP recursion directly results in several problems. In addition to the
standard difficulties associated with applying DP to generic problems, ik has expanding
dimension over the length of the problem. In addition to this, computing the conditional
expectation over the state is difficult, as the posterior belief over the state may not have a
closed form representation for general problem settings.

Alternatively to this approach, we may reason in terms of sufficient statistics: quantities
that summarize all of the informational content of ik. For example, if we can construct a
conditional distribution over state, p(xk | ik), we can design a policy of the form πk(p(xk |
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ik)). However, such an approach is typically only tractable in a very limited group of settings.
We will discuss one such setting where this approach is tractable in the next chapter, when
we discuss the linear quadratic Gaussian control setting; we will expand on the general
difficulty of optimal control with incomplete state information in the second half of this
text. Analogously to the definition of the MDP, we refer to an MDP augmented with an
observation function h(·, ·) as a partially-observed MDP (POMDP).

2.4 Optimal Control in Discrete State Spaces

We will now look at a handful of practical algorithms that use dynamic programming. The
problem setting we consider for these methods are discrete state space and discrete action
space methods. We will first discuss policy evaluation: given some policy π and MDP M,
we aim to determine the associated expected total cost (or value function), Jπ. Following
this, we will discuss policy improvement methods, in particular, policy iteration and value
iteration. We consider the discrete state space setting as it makes exact dynamic program-
ming tractable—by representing the value function and the policy as lookup tables, we may
exactly use the previously developed dynamic programming principles. This setting is one of
a small number in which dynamic programming can be performed without approximation.

We will assume a deterministic policy, but this assumption is easily relaxed. We will
discuss both the finite horizon setting, in which the problem ends after a fixed number of
time steps, and the infinite horizon setting in which the problem continues forever. In this
case, the cost function and dynamics are not time-varying, and we assume the problem is
discounted (as discussed previously).

2.4.1 Policy Evaluation

Finite Horizon

The total expected cost associated with a state x may be written as

Jπk (x)← ck(x, π(x)) +
∑
x′∈X

p(x′ | x, π(x))Jπk+1(x′). (2.25)

Given a model of the dynamics, which we (for now) will assume known, we exactly have
access to the density p(x′ | x, π(x)). Thus, the algorithm proceeds backward in time,
exactly computing this expectation each time.

Infinite Horizon

This same backward iteration can be repeated until convergence in the infinite horizon
setting. It will, in the limit, converge to the true value function. Note that for infinite
horizon problems, the value function is not time varying. The outline for infinite horizon
policy evaluation is given in Algorithm 1. In this setting, we use a threshold δ for convergence.
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Algorithm 1 Infinite Horizon Policy Evaluation

Require: Policy π, termination criterion δ > 0, discount factor γ
1: Initialize J(x) for all x arbitrarily, with terminal value 0, and ε > δ
2: while ε > δ do
3: for each x ∈ X do
4: Ĵ(x)← c(x, π(x)) + γ

∑
x′∈X p(x

′ | x, π(x))J(x′)

5: δ ← max(δ, |J(x)− Ĵ(x)|)
6: J(x)← Ĵ(x)
7: end for
8: end while
9: return J(x) for each x ∈ X

That is, the dynamic programming recursion is continued until the value estimate changes
by less than δ for each state.

This iteration, effectively, performs dynamic programming backward in time until the
effect of the finite horizon is forgotten. That is, the time-dependency of the value function is
more impactful, and the policy is greedier, closer to the end of the problem. Infinite horizon
approaches proceed backward in time until they reach a fixed point, where the value function
(effectively) does not change between iteration. This fixed point is the unique solution of
the Bellman equation.

2.4.2 Value Iteration

Having discussed the computation of the value function for a fixed policy, we now proceed
to the policy improvement setting, in which we aim to compute the optimal policy.

Finite Horizon

Value iteration follows closely from the policy evaluation setting. In particular, for each
x ∈ X , we perform

J∗k (x)← min
u∈U

{
ck(x,u) +

∑
x′∈X

p(x′ | x,u)J∗k+1(x′)

}
. (2.26)

This process is iterated backward in time, for all states following the dynamic programming
process. This yields the optimal value function, but has not given us the optimal policy.
This may be computed via

π∗k(x)← argminu∈U

{
ck(x,u) +

∑
x′∈X

p(x′ | x,u)J∗k+1(x′)

}
. (2.27)

Thus while performing value iteration, we store only the value function. Given this, we can
extract the policy from a one step optimization problem.
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As a useful tool that will appear throughout our discussion of reinforcement learning in
particular, we will define the state-action value function (or Q function as it is more typically
called) as

Qπ
k(x,u) = ck(x,u) +

∑
x′∈X

p(x′ | x,u)Jπk+1(x′). (2.28)

This represents the total expected cost associated with taking action u, followed by acting
according to policy π for the remainder of the problem. The Q function is extremely useful
because of how it relates to the previously introduced quantities that appear throughout this
section. First, note that

Jπk (x) = Qπ
k(x, π(x)) (2.29)

and
J∗k (x) = min

u∈U
Q∗k(x,u). (2.30)

Note also that
π∗k(s) = argminu∈UQ

∗
k(x,u). (2.31)

A similar approach to value iteration may be performed using the Q function. Note that
(2.26) is equivalent to

J∗k (x)← min
u∈U

Q∗k(x,u) (2.32)

and thus we can iterate backward in time computing the Q function for each state action
pair using

Q∗k(x,u) = ck(x,u) +
∑
x′∈X

p(x′ | x,u) min
u′∈U

Q∗k+1(x′,u′). (2.33)

We will see versions of this relation later in the course that replace the expectation over x′

with observed transitions to learn Q functions from data.

Infinite Horizon

Similarly to infinite horizon policy evaluation, value iteration in the infinite horizon setting
iterates backward in time until a convergence threshold is met. The procedure is described
in Algorithm 2.

2.4.3 Policy Iteration

Policy iteration interleaves a policy evaluation step with a policy improvement step. In
short, policy improvement alternates between evaluation of some policy to compute a value
function, and a policy improvement step in which the value function is used to compute an
improved policy.

The overall policy iteration process happens as follows. First, a policy evaluation step is
performed to obtain the value function associated with the current policy. Then, the policy
is updated for each state. We will outline policy iteration in the infinite horizon case only,
for which there are possible performance improvements relative to value iteration.
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Algorithm 2 Infinite Horizon Value Iteration

Require: Termination criterion δ > 0, discount factor γ
1: Initialize J(x) for all x arbitrarily, with terminal value 0, and ε > δ
2: while ε > δ do
3: for each x ∈ X do
4: Ĵ(x)← minu∈U

{
c(x,u) +

∑
x′∈X p(x

′ | x,u)J(x′)
}

5: δ ← max(δ, |J(x)− Ĵ(x)|)
6: J(x)← Ĵ(x)
7: end for
8: end while
9: return π(x) = argminu∈U

{
c(x,u) +

∑
x′∈X p(x

′ | x,u)J∗(x′)
}

for each x ∈ X

Algorithm 3 Infinite Horizon Policy Iteration

Require: Discount factor γ
1: Initialize J(x) and π(x), π̂(x) for all x arbitrarily, with π(x) 6= π̂(x) for some x ∈ X
2: while π(x) 6= π̂(x) for some x ∈ X do
3: π(x)← π̂(x) for all x ∈ X
4: Perform policy evaluation step with π, yielding value function J
5: Perform policy improvement step with J , yielding improved policy π̂
6: end while
7: return π(x) = argminu∈U

{
c(x,u) +

∑
x′∈X p(x

′ | x,u)J(x′)
}

for each x ∈ X

The overall policy iteration algorithm is outlined in Algorithm 3. The policy evaluation
step proceeds as in Algorithm 1. This policy evaluation step yield value function J . Then
the policy improvement step consists of computing

π(x)← argminu∈U

{
c(x,u) +

∑
x′∈X

p(x′ | x,u)J(x′)

}
(2.34)

or equivalently, π(x)← argminu∈UQ(x,u) for each state. Whereas value iteration interleaves
policy improvement and policy evaluation at every iteration, policy iteration instead performs
policy evaluation until convergence before performing policy improvement. For some MDPs,
this may converge faster than value iteration.

Generalized Policy Iteration

The policy iteration algorithm consists of two subroutines, performed iteratively: policy
evaluation and policy improvement. We have specified algorithms for these two subroutines,
in the form of one step dynamic programming-based approaches. Moreover, we have specified
that these two subroutines run until convergence before the next subroutine commences.
These two subroutines are general however, and can be replaced with alternative approaches.
Moreover, these subroutines do not have to run to convergence before the next subroutine
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begins. We refer to the general algorithm iterating between some form of policy evaluation
and improvement as generalized policy iteration.

2.5 Continuous-Time Dynamic Programming

In this section, we will extend the ideas of dynamic programming to the continuous time
setting. Restating the continuous time optimal control problem, we assume dynamics

ẋ(t) = f(x(t),u(t), t) (2.35)

and cost

J(x(0)) = cf (x(tf ), tf ) +

∫ tf

0

c(x(τ),u(τ), τ)dτ. (2.36)

where tf is fixed.

2.5.1 Hamilton-Jacobi-Bellman

As in the discrete time principle of optimality, consider the tail problem

J(x(t), {u(τ)}tfτ=t, t) = cf (x(tf ), tf ) +

∫ tf

t

c(x(τ),u(τ), τ)dτ (2.37)

where t ≤ tf and x(t) is an admissible state value. The optimal solution to this tail problem
comes from the functional minimization

J∗(x(t), t) = min
{u(τ)}

tf
τ=t

{
cf (x(tf ), tf ) +

∫ tf

t

c(x(τ),u(τ), τ)dτ

}
. (2.38)

Note, then, that due to the additivity of cost we can split the problem up over time,

J∗(x(t), t) = min
{u(τ)}

tf
τ=t

{∫ t+∆t

t

c(x(τ),u(τ), τ)dτ + cf (x(tf ), tf ) +

∫ tf

t+∆t

c(x(τ),u(τ), τ)dτ

}
(2.39)

which by applying the principle of optimality to the tail cost,

J∗(x(t), t) = min
{u(τ)}t+∆t

τ=t

{∫ t+∆t

t

c(x(τ),u(τ), τ)dτ + J∗(x(t+ ∆t), t+ ∆t)

}
. (2.40)

Let J∗t (x(t), t) = ∇tJ
∗(x(t), t) and J∗x(x(t), t) = ∇xJ∗(x(t), t). Taylor expanding, we have

J∗(x(t), t) = min
{u(τ)}t+∆t

τ=t

{c(x(t),u(t), t)∆t+ J∗(x(t), t) + (J∗t (x(t), t))∆t (2.41)

+ (J∗x(x(t), t))T (x(t+ ∆t)− x(t)) + o(∆t)}
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for small ∆t. The first term is a result of Taylor expanding the integral and applying the
fundamental theorem of calculus. Note that we can pull J∗(x(t), t) out of the minimization
over cost, as this quantity will not vary under different choices of future actions. Dividing
through by ∆t and taking the limit ∆t→ 0, we obtain the Hamilton-Jacobi-Bellman equation

0 = J∗t (x(t), t) + min
u(t)

{
c(x(t),u(t), t) + (J∗x(x(t), t))Tf(x(t),u(t), t)

}
(2.42)

with terminal condition
J∗(x(tf ), tf ) = cf (x(tf ), tf ). (2.43)

For convenience, we will define the Hamiltonian

H(x(t),u(t), J∗x, t) := c(x(t),u(t), t) + (J∗x(x(t), t))Tf(x(t),u(t), t) (2.44)

which allow us to compactly write the HJB equation as

0 = J∗t (x(t), t) + min
u(t)
{H(x(t),u(t), J∗x, t)} . (2.45)

The HJB equation is a partial differential equation that, for cost-to-go J∗(x(t), t), will
satisfy all time-state pairs (x(t), t). The previous informal derivation assumed differentia-
bility of J∗(x(t), t), which we do not know a priori. This assumption is rectified by the
following theorem on solutions to the HJB equation.

Theorem 2.5.1 (Sufficiency Theorem). Suppose V (x, t) is a solution to the HJB equation,
that V (x, t) is C1 in x and t, and that

0 = Vt(x, t) + min
u∈U

{
c(x,u, t) + (Vx(x, t))Tf(x,u, t)

}
V (x, tf ) = cf (x, tf ) ∀x

Suppose also that π∗(x, t) attains the minimum in this equation for all t and x. Let {x∗(t) |
t ∈ [t0, tf ]} be the state trajectory obtained from the given initial condition x(0) when the
control trajectory u∗(t) = π∗(x∗(t), t), t ∈ [t0, tf ] is used. Then V is equal to the optimal
cost-to-go function, i.e.,

V (x, t) = J∗(x, t) ∀x, t. (2.46)

Furthermore, the control trajectory {u∗(t) | t ∈ [t0, tf ]} is optimal..

Proof. [Ber12], Volume 1, Section 7.2.

2.5.2 Differential Games

We have so far addressed the case in which we aim to solve the optimal control problem
for a single agent. We will now consider an adversarial game setting, in which there exists
another player that aims to maximally harm the first agent. In particular, we will consider
zero sum games in which the second agent aims to maximize the cost of the first agent.
While the differential game setting is not restricted to this case — agents may have separate
cost functions that partially interfere or aid each other — the zero-sum case lends itself to
useful analytical tools.
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Differential Games and Information Patterns

We consider the two player differential game with dynamics

ẋ(t) = f(x(t),u(t),d(t)) (2.47)

where the first player takes action u(t) at time t, and the second player takes action d(t).
The state x(t) is the joint state of both players. We write the cost as

J(x(t)) = cf (x(0)) +

∫ 0

t

c(x(τ),u(τ),d(τ))dτ (2.48)

which the first agent aims to maximize, and the second agent aims to minimize.
To fully specify the differential game, we must specify what each agent knows, and when.

This is referred to as the information pattern of the game. In addition to capturing the
knowledge of the state available to each agent, the information pattern also captures the
knowledge of each other agents’ strategies available to each agent.

Hamilton-Jacobi-Isaacs

The key idea in building the multi-agent equivalent of the HJB equation will again be to
apply the principle of optimality. We consider the information pattern in which the adversary
has access to the instantaneous control action of the first agent, so the cost takes the form

J(x(t), t) = min
Γ(u)(·)

max
u(·)

{∫ 0

t

c(x(τ),u(τ),d(τ))dτ + cf (x(0))

}
. (2.49)

Applying the dynamic programming principle, we have

J(x(t), t) = min
Γ(u)(·)

max
u(·)

{∫ t+∆t

t

c(x(τ),u(τ),d(τ))dτ + J(x(t+ ∆t), t+ ∆t)

}
. (2.50)

We can take the same strategy as with the informal derivation of the HJB equation, and
Taylor expand both terms to yield

J(x(t), t) = min
Γ(u)(·)

max
u(·)
{c(x(τ),u(τ),d(τ))∆t+ J(x(t), t) (2.51)

+ (Jx(x(t), t))Tf(x(t),u(t),d(t))∆t+ Jt(x(t), t)∆t}.

Note that we are optimizing over instantaneous actions, and so we optimizing over finite
dimensional quantities as opposed to functions. Dividing through by ∆t and removing
redundant terms, we get the Hamilton-Jacobi-Isaacs (HJI) equation

0 = Jt(x, t) + max
u

min
d

{
c(x,u,d) + (Jx(x,u,d))Tf(x,d,u)

}
(2.52)

with boundary condition
J(x, 0) = cf (x). (2.53)

Note that we have switched the order of the min/max.
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Reachability

Differential games have applications in multi-agent modeling (both in the context of au-
tonomous systems engineering and, e.g., economics and operations research). One concrete
application in engineering is reachability analysis. In this setting, an agent aims to compute
the set of states in which there exists a policy that either avoids a target set or enters a
target set, subject to adversarial disturbances. The former case, in which we would like to
avoid a target set, is useful for safety verification. If we are able to, even in the worst case,
guarantee e.g. collision avoidance, we have guarantees on safety (subject of course to our
system assumptions). The latter case is useful for task satisfaction. For example, we would
like a quadrotor to reach a set of safe hovering poses, even under adversarial disturbances.
Finding the backward reachable set in this case would find all states such that there exists
a policy that succeeds in reaching the target set.

More concretely, the first case aims to find a set

A(t) = {x̄ : ∃Γ(u)(·),∀u(·), ẋ = f(x,u,d),x(t) = x̄,x(0) ∈ T } (2.54)

where T is the unsafe set which we aim to avoid. Breaking this down, A(t) is the set of
states at time t such that there exists Γ(u) that maps action u to a disturbance such that,
following the dynamics induced by the disturbance and the action sequence, the state is in
T at time 0 (note that we are considering t ≤ 0).

The second case aims to find a set

R(t) = {x̄ : ∀Γ(u)(·), ∃u(·), ẋ = f(x,u,d),x(t) = x̄,x(0) ∈ T }, (2.55)

where in this case T is the set that we wish to reach. In this setting, we wish to find all
states that, no matter what strategy the disturbance takes, there exist control actions that
can steer the system to the goal state. Because the disturbance is adversarial (we reason
over all adversary strategies), this is an extremely conservative form of safety analysis.

Computation of the backward reachable set results from solving a differential game of
kind in which the outcome is Boolean (i.e. whether or not x(0) ∈ T ). This boolean outcome
can be encoded by removing the running cost and choosing a particular form for the final
cost. In particular, we can choose a final cost where

x ∈ T ⇐⇒ cf (x) ≤ 0. (2.56)

As a result, the agent should aim to maximize cf to avoid T , whereas the disturbance should
aim to minimize it. The two settings then take the following forms:

• Set avoidance: J(x, t) = minΓ(u) maxu cf (x(0))

• Set reaching: J(x, t) = maxΓ(u) minu cf (x(0))
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Sets vs. Tubes. We have so far considered avoidance or reachability problems for which
we care about set membership at time t = 0. However, for something like collision avoidance,
we would like to stay collision free at every time as opposed to a particular time. Backward
reachable sets capture the case in which only the final time set membership matters, and
states for times t < 0 do not matter. Backward reachable tubes capture the entire time
duration of the problem. Any state that passes through the target at any time in the
problem duration is included. This yields a modified value function of the form

J(x, t) = min
Γ(u)

max
u

min
τ∈[t,0]

cf (x(τ)). (2.57)

If the target set membership holds at any time τ ′, then minτ∈[t,0] cf (x(τ)) ≤ cf (x(τ ′)) ≤ 0.

2.6 Bibliographic Notes

Our coverage of reachability analysis is based on the [MBT05], which is an important early
work in the field, in addition to being a relatively comprehensive coverage of the method.
For a review of differential games with a (slight) emphasis on economics and management
science, we refer the reader to [Bre10]. For a review of HJB and continuous time LQR, we
refer the reader to [Ber12] and [Kir12].
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Chapter 3

Linear Quadratic Optimal Control

In this section we will address an important subclass of continuous state and action space
problems for which dynamic programming can be applied exactly. In this setting, we assume
linear dynamics and quadratic costs, and the problem setting is referred to as the linear
quadratic regulator (LQR) problem. This LQR setting is important for several reasons.
First, as a local stabilizing controller, it is a core tool that is often a first (effective) approach
for a wide variety of problems. Second, as we build up open-loop trajectory optimization
methods later in the class, the LQR approach will often be used to provide local tracking
of these trajectories. Finally, tracking LQR paired with a forward rollout step will form the
basis of the first (and one of the most effective) nonlinear trajectory optimization methods
that we will see in this class.

We will discuss the LQR setting in both discrete and continuous time. Additionally, we
will further our discussion on the incomplete state estimation case in the linear quadratic
setting, in which the dynamics and observation function are linear and the cost is quadratic.
This results in the so-called linear quadratic Gaussian (LQG) setting, which is an important
example of the separation principle, in which state observers and feedback controllers can
be designed independently. As a consequence, the LQG approach forms the foundation of
many algorithms in incomplete state information optimal control.

3.1 The Linear Quadratic Regulator in Discrete Time

We will fix the dynamics of the system to be discrete time (possibly time-varying) linear,

xk+1 = Akxk +Bkuk (3.1)

and the cost function as quadratic

c(xk,uk) =
1

2
(xTkQkxk + uTkRkuk) (3.2)

cN(xk) =
1

2
xTkQNxk (3.3)
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where Qk ∈ Rn×n is positive semi-definite and Rk ∈ Rm×m is positive definite for all k =
0, . . . , N . Importantly, we assume xk and uk are unconstrained for all k. To perform DP
recursion, we initialize

J∗N(xN) =
1

2
xTNQNxN :=

1

2
xTNVNxN . (3.4)

Then, applying (2.12), we have

J∗N−1(xN−1) =
1

2
min

uN−1∈Rm

{
xTN−1QN−1xN−1 + uTN−1RN−1uN−1 + xTNVNxN

}
(3.5)

which, applying the dynamics,

J∗N−1(xN−1) =
1

2
min

uN−1∈Rm
{xTN−1QN−1xN−1 + uTN−1RN−1uN−1 (3.6)

+ (AN−1xN−1 +BN−1uN−1)TVN(AN−1xN−1 +BN−1uN−1)}.

Rearranging, we have

J∗N−1(xN−1) =
1

2
min

uN−1∈Rm
{xTN−1(QN−1 + ATN−1VNAN−1)xN−1 (3.7)

+ uTN−1(RN−1 +BT
N−1VNBN−1)uN−1

+ 2uTN−1(BT
N−1VNAN−1)xN−1}.

Note that this optimization problem is convex in uN−1 as RN−1 +BT
N−1VNBN−1 > 0. There-

fore, any local minima is a global minima, and therefore we can simply apply the first order
optimality conditions. Differentiating,

∂J∗N−1

∂uN−1

(xN−1) = (RN−1 +BT
N−1VNBN−1)uN−1 + (BT

N−1VNAN−1)xN−1 (3.8)

and setting this to zero yields

u∗N−1 = −(RN−1 +BT
N−1VNBN−1)−1(BT

N−1VNAN−1)xN−1 (3.9)

which we write
u∗N−1 = LN−1xN−1 (3.10)

which is a time-varying linear feedback policy. Plugging this feedback policy into (3.6),

J∗N−1(xN−1) =xTN−1(QN−1 + LTN−1RN−1LN−1 (3.11)

+ (AN−1 +BN−1LN−1)TVN(AN−1 +BN−1LN−1))xN−1.

Critically, this implies that the cost-to-go is always a positive semi-definite quadratic function
of the state. Because the optimal policy is always linear, and the optimal cost-to-go is
always quadratic, the DP recursion may be recursively performed backward in time and the
minimization may be performed analytically.

Following the same procedure, we can write the DP recursion for the discrete-time LQR
controller:
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1. VN = QN

2. Lk = −(Rk +BT
k Vk+1Bk)

−1(BT
k Vk+1Ak)

3. Vk = Qk + LTkRkLk + (Ak +BkLk)
TVk+1(Ak +BkLk)

4. u∗k = Lkxk

5. J∗k (xk) = 1
2
xTk Vkxk

There are several implications of this recurrence relation. First, even if A,B,Q,R are all con-
stant (not time-varying), the policy is still time-varying. Why is this the case? Control effort
invested early in the problem will yield dividends over the remaining length of the horizon,
in terms of lower state cost for all future time steps. However, as the remaining length of the
episode becomes shorter, this tradeoff is increasingly imbalanced, and the control effort will
decrease. However, for a linear time-invariant system, if (A,B) is controllable, the feedback
gain Lk approach a constant as the episode length approaches infinity. This time-invariant
policy is practical for long horizon control problems, and may be approximately computed
by running the DP recurrence relation until approximate convergence.

3.1.1 LQR with Additive Noise

We have so far considered LQR without disturbances. We will now extend the LQR controller
to the setting in which additive Gaussian noise disturbs the system. The system dynamics
are

xk+1 = Akxk +Bkuk + ωk (3.12)

where ωk ∼ N (0,Σω), and the stage-wise cost is

ck(xk,uk) =
1

2
(xTkQkxk + uTkRkuk). (3.13)

with terminal cost 1
2
xTNQNxN . We wish to minimize the expected cost. The cost-to-go is

J∗k (xk) = xTk Vkxk + vk. (3.14)

where Vk is a positive definite matrix as in the deterministic case, and vk is an additive
constant term. We leave the proof of this cost-to-go to the reader. Plugging into the
Bellman equation, we have

J∗k (xk) = min
uk∈Rm

E[
1

2
xTkQkxk +

1

2
uTkRkuk + vk+1 (3.15)

+
1

2
(Akxk +Bkuk + ωk)

TVk+1(Akxk +Bkuk + ωk) + vk+1]

= min
uk∈Rm

{1

2
xTkQkxk +

1

2
uTkRkuk + vk+1 (3.16)

+ E[
1

2
(Akxk +Bkuk + ωk)

TVk+1(Akxk +Bkuk + ωk)]}.

41



Following the same minimization procedure as for LQR, we see that the policy is identical
to that in Section 3.1. Then, plugging the policy back in to the dynamic programming
recursion, we have

J∗k (xk) = xTk (Qk + LTkRkLk + E[(Ak +BkLk + ωk)
TVk+1(Ak +BkLk + ωk)])xk + vk+1

(3.17)

= xTk (Qk + LTkRkLk + (Ak +BkLk)
TVk+1(Ak +BkLk))xk + tr(ΣωVk+1) + vk+1

(3.18)

where tr(·) denotes the trace. The equality between (3.17) and (3.18) holds as

E[(Ak +BkLk)
TVk+1ωk] = 0 (3.19)

for zero-mean ωk, and E[ωTk Vk+1ωk] = tr(ΣωVk+1). Note that this is identical to the noise-
free DP recursion, with the exception of the added trace and constant terms which capture
the role of the additive noise. Thus, we have two recursive update equations

Vk = Qk + LTkRkLk + (Ak +BkLk)
TVk+1(Ak +BkLk) (3.20)

vk = vk+1 + tr(ΣωVk+1) (3.21)

where the first is the standard Riccati recursion, and the second captures the additive con-
stant term.

In summary, we have reached the surprising outcome that with additive Gaussian noise,
we obtain the same optimal policy as in the deterministic case. The total cost has increased,
but it is typical to not store the constant term in the DP recursion, as it does not impact
the policy.

3.1.2 LQR with (Bi)linear Cost and Affine Dynamics

The previous two subsections have presented the most common formulation of the LQR
setting. In this subsection, we will derive the discrete time LQR controller for a more
general system with bilinear/linear terms in the cost and affine terms in the dynamics. This
derivation will be the basis of algorithms we will build up in the following subsections. More
concretely, we consider systems with stage-wise cost

c(xk,uk) =
1

2
xTkQkxk +

1

2
uTkRkuk + uTkHkxk + qTk xk + rTk uk + qk, (3.22)

terminal cost

cN(xk) =
1

2
xTkQNxk + qTNxk + qN , (3.23)

and dynamics
xk+1 = Akxk +Bkuk + dk. (3.24)

The cost-to-go will take the form

Jk(xk) =
1

2
xTk Vkxk + vTk xk + vk. (3.25)
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Repeating our approach from the last subsection, we have

J∗k (xk) = min
uk∈Rm

{1

2
xTkQkxk +

1

2
uTkRkuk + uTkHkxk + qTk xk + rTk uk + qk (3.26)

+
1

2
(Akxk +Bkuk + dk)

TVk+1(Akxk +Bkuk + dk)

+ vTk+1(Akxk +Bkuk + dk) + vk+1}.

Rearranging, we have

J∗k (xk) = min
uk∈Rm

{1

2
xTk (Qk + ATk Vk+1Ak)xk +

1

2
uTk (Rk +BT

k Vk+1Bk)uk (3.27)

+ uTk (Hk +BT
k Vk+1Ak)

Txk + (qk + ATk VK+1dk + ATk vk+1)Txk

+ (rk +BT
k Vk+1dk +BT

k vk+1)uk + (vk+1 +
1

2
dTk Vk+1dk + vTk+1dk)}.

Solving this minimization problem, we see that our optimal controller takes the form

u∗k = lk + Lkxk. (3.28)

We will define the following useful terms which will be used throughout the remainder of
this section

Su,k = rk + vTk+1Bk + dTk Vk+1Bk (3.29)

Suu,k = Rk +BT
k Vk+1Bk (3.30)

Sux,k = Hk +BT
k Vk+1Ak. (3.31)

Given this notation, all necessary terms can be computed via the following relations

1. VN = QN ; vN = qN ; vN = qN

2.

Lk = −S−1
uu,kSux,k (3.32)

lk = −S−1
uu,kSu,k (3.33)

3.

Vk = Qk + ATk Vk+1Ak − LTk Suu,kLk (3.34)

vk = qk + ATk (vk+1 + Vk+1dk) + STux,klk (3.35)

vk = vk+1 + qk + dTk vk+1 +
1

2
dTk Vk+1dk +

1

2
lTk Su,k (3.36)

4. u∗k = lk + Lkxk

5. Jk(xk) = 1
2
xTk Vkxk + vTk xk + vk.

In the following subsections (specifically in our discussion of differential dynamic program-
ming) we will introduce more convenient (and compact) notation.
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3.1.3 Tracking LQR Tracking

We have so far considered the generic linear quadratic control problem, in which we want
to regulate to the zero point, and deviations from this point are penalized. In this section,
we will address the case in which we want to track a pre-specified trajectory. Let us as-
sume (for now) that we have been given a nominal trajectory of the form (x̄0, . . . , x̄N) and
(ū0, . . . , ūN−1).

LQR Tracking with a Linear trajectory

We will first assume that the provided trajectory satisfies our given dynamics, such that

x̄k+1 = Akx̄k +Bkūk + dk, ∀k = 0, . . . , N − 1. (3.37)

Then, we can rewrite our dynamics in terms of deviations from the nominal trajectory,

δxk = xk − x̄k (3.38)

δuk = uk − ūk. (3.39)

Rewriting, we have
δxk+1 = Akδxk +Bkδuk. (3.40)

Thus, tracking the nominal trajectory reduces to driving the state deviation, δxk, to zero.
Note that solving this problem requires rewriting the original cost function in terms of the
deviations δxk, δuk.

LQR Tracking around a Nonlinear Trajectory

Despite LQR being a powerful approach to optimal control, it suffers from a handful of
limitations. First and foremost, it assumes the dynamics are (possibly time-varying) linear,
and the cost function is quadratic. While most systems are in fact nonlinear, a typical
approach to designing feedback controllers is to linearize around some operating point. This
is an effective method for designing regulators, which aim to control the system to some
particular state. If, in contrast, we wish to track a trajectory, we must instead linearize
around this trajectory. We will assume we are given a nominal trajectory which satisfies the
nonlinear dynamics, such that

x̄k+1 = f(x̄k, ūk), ∀k = 0, . . . , N − 1. (3.41)

Given this, we can linearize our system at each timestep by Taylor expanding,

xk+1 ≈ f(x̄k, ūk) +
∂f

∂x
(x̄k, ūk)︸ ︷︷ ︸
Ak

(xk − x̄k) +
∂f

∂u
(x̄k, ūk)︸ ︷︷ ︸
Bk

(uk − ūk) (3.42)

which allows us to again rewrite the system in terms of deviations, to get

δxk+1 = Akδxk +Bkδuk (3.43)
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which is linear in δxk, δuk. Note that design of systems of this type often require careful
design and analysis, as deviating from the nominal trajectory results in the loss of accuracy
of the local model linearization.

In designing this tracking system, a second question now occurs: how do we choose our
cost function? One possible option is arbitrary choice of Q and R by the system designer.
This has the advantage of being easily customizable to change system behavior, and we can
guarantee the necessary conditions on these matrices. A second option, if we are given some
arbitrary (possibly non-quadratic) cost function c, is to locally quadratize the cost function.
Writing

ck := c(x̄k, ūk) (3.44)

ci,k :=
∂c

∂i
(x̄k, ūk) (3.45)

cij,k :=
∂2c

∂i∂j
(x̄k, ūk) (3.46)

we can second order Taylor expand our cost function around our nominal trajectory

c(δxk, δuk) ≈
1

2

 1
δxk
δuk

T 2ck cTx,k cTu,k
cx,k cxx,k cTux,k
cu,k cux,k cuu,k

 1
δxk
δuk

 . (3.47)

Here cxx,k and cuu,k replace Qk and Rk from the previous section, respectively. There are
two primary concerns with this approach to choosing the cost function. First, we require
the quadratic form in (3.47) to be positive semi-definite and cuu,k to be positive definite,
for all k. Second, we have an implicit cost that we would like to stay close to the nominal
trajectory to ensure our linearized model does not become inaccurate. As a result of this
implicit cost, we may wish to tune the cost terms to yield tracking that is better suited to
the nonlinear model that we are tracking.

3.2 Iterative LQR and Differential Dynamic Program-

ming

3.2.1 Iterative LQR

We have addressed the case in which we wish to track a given trajectory with LQR. A
natural question, now, is whether we can use LQR to improve on this nominal trajectory?
Iterative LQR augments tracking LQR with a forward pass in which the nominal trajectory
is updated. As a consequence, it can be used to improve trajectories and in most cases, can
be used as a practical trajectory generation and control algorithm for nonlinear systems. We
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Algorithm 4 iLQR

Require: Nominal control sequence, (ū0, . . . , ūN−1)
1: δuk = 0 for all k
2: while not converged do

Forward pass:
3: Compute nominal trajectory x̄k+1 = f(x̄k, ūk + δuk) and set ūk ← ūk + δuk

Backward pass:
4: Compute Q terms around (x̄k, ūk) for all k via (3.48 – 3.53)
5: Update feedback law via (3.55 – 3.56)
6: Update value approximation via (3.57 – 3.59)
7: end while
8: Compute control law πk(xk) = ūk + lk + Lk(xk − x̄k)
9: return {πk}N−1

k=0

will define the following useful terms

Qk = ck + vk+1 (3.48)

Qx,k = cx,k + fTx,kvk+1 (3.49)

Qu,k = cu,k + fTu,kvk+1 (3.50)

Qxx,k = cxx,k + fTx,kVk+1fx,k (3.51)

Quu,k = cuu,k + fTu,kVk+1fu,k (3.52)

Qux,k = cux,k + fTu,kVk+1fx,k (3.53)

where fx,k = Ak and fu,k = Bk. In this form, the optimal control perturbation is

δu∗k = lk + Lkδxk (3.54)

where

lk = −Q−1
uu,kQu,k (3.55)

Lk = −Q−1
uu,kQux,k. (3.56)

Finally, the local backward recursion can be completed by updating the value function
terms via

vk = Qk −
1

2
lTkQuu,klk (3.57)

vk = Qx,k − LTkQuu,klk (3.58)

Vk = Qxx,k − LTkQuu,kLk. (3.59)

So far, we have simply derived an alternative method for performing a quadratic approx-
imation of the DP recursion around some nominal trajectory. The iterative LQR (iLQR)
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algorithm differs by introducing a forward pass that updates the trajectory that is being
tracked. The algorithm alternates between forward passes, in which the control policy is
applied to the nonlinear dynamics, and backward passes in which the cost function and dy-
namics are linearized around the new nominal trajectory, and the quadratic approximation
of the value, as well as the new control law, is computed. The iterative LQR algorithm is out-
lined in Algorithm 4. Critically, note that this algorithm returns both a nominal trajectory,
in terms of the x̄k, ūk, as well as a feedback policy that stabilizes around this trajectory.

3.2.2 Differential Dynamic Programming

Iterative LQR performs trajectory optimization by first linearizing the dynamics and quadra-
tizing the cost function, and then performing the dynamic programming recursion to compute
optimal controls. While this linearization/quadratization approach is sufficient for approxi-
mating the Bellman equation such that it may be solved analytically, an alternative approach
is to directly approximate the Bellman equation. Differential dynamic programming (DDP)
directly builds a quadratic approximation of the right hand side of the Bellman equation
(as opposed to first approximating the dynamics and the cost function), which may then be
solved analytically. We will first define the change in the value of Jk under a perturbation
δxk, δuk,

Q(δxk, δuk) := c(x̄k + δxk, ūk + δuk) + Jk+1(f(x̄k + δxk, ūk + δuk)). (3.60)

Note that Q here is different from the Q matrix in Section 3.1. Using the same notation as
in (3.44), we can write the quadratic expansion of (3.60) as

Q(δxk, δuk) ≈
1

2

 1
δxk
δuk

T 2Qk QT
x,k QT

u,k

Qx,k Qxx,k QT
ux,k

Qu,k Qux,k Quu,k

 1
δxk
δuk

 (3.61)

where

Qk = ck + vk+1 (3.62)

Qx,k = cx,k + fTx,kvk+1 (3.63)

Qu,k = cu,k + fTu,kvk+1 (3.64)

Qxx,k = cxx,k + fTx,kVk+1fx,k + vk+1 · fxx,k (3.65)

Quu,k = cuu,k + fTu,kVk+1fu,k + vk+1 · fuu,k (3.66)

Qux,k = cux,k + fTu,kVk+1fx,k + vk+1 · fux,k. (3.67)

Note that these terms differ only from iLQR via the last term in (3.65 – 3.67), which are
second order approximation of the dynamics. Note that the dot notation denotes tensor
contraction.

Given this, we can partially minimize this quadratic form over the control deviation,

δu∗k = argminδuQ(δxk, δu) = lk + Lkδxk (3.68)
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where

lk = −Q−1
uu,kQu,k (3.69)

Lk = −Q−1
uu,kQux,k. (3.70)

The DDP algorithm is identical to Algorithm 4, just with the alternative definitions
for Qxx,k, Quu,k and Qux,k. The main philosophical difference between iLQR and DDP is
that iLQR first approximates the dynamics and cost, and then solves the Bellman equation
directly, whereas DDP directly approximates the Bellman equation. While DDP yields a
more accurate approximation, computing the second order dynamics terms is expensive in
practice. Practically, iLQR is sufficient for most applications.

3.2.3 Algorithmic Details for iLQR and DDP

Algorithm 4 leaves out several details that would be critical for implementing the algorithm.
First, what convergence criteria should we use? In [TL05], the authors stop when the update
to the nominal control action sequence is sufficiently small. In [LK14], the authors iterate
until the cost of the trajectory (with some additional penalty terms) increases. Finally,
a variety of convergence criteria are based on expected trajectory improvement, computed
via line search [JM70, TET12]. In the forward pass, standard iLQR computes an updated
nominal control sequence via ūk ← ūk + lk + Lkδxk. Instead we can weight lk with a
scalar α ∈ [0, 1] for which we perform line search. This results in increased stability (as
with standard line search for step size determination in nonlinear optimization) and possibly
faster convergence. When α is close to zero, or alternative conditions (such as expected
improvement being small) are met, we terminate. For a further discussion of this approach,
we refer the reader to [TET12], which also features a discussion of step size determination
in the DDP literature.

Iterative LQR and DDP rely on minimizing a second order approximation of the cost-to-
go perturbation. However, we do not have any guarantees on the convexity of Q(δxk, δuk)
for arbitrary cost functions. Note that DDP is performing a Newton step [LS92] (iLQR
is performing a Newton step with an approximation of the Hessian) via decomposing the
optimization problem over controls into N smaller optimization problems. As such, standard
approaches from Newton methods for regularization have been applied, such as replacing
Quu,k with Quu,k + µI, which is convex for sufficiently large µ. Alternative approaches
have been explored in [TET12, TMT14], based on regularizing the quadratic term in the
approximate cost-to-go.

Both iLQR and DDP are local methods. Full dynamic programming approaches yield
globally optimal feedback policies. In contrast, iLQR and DDP yield nominal trajectories and
local stabilizing controllers. However, these local controllers are often sufficient for tracking
the trajectory. As they are local method, choice of initial control sequence is important, and
poor choice may result in poor convergence. Additionally, we have not considered constraints
on either state or action in the derivation of iLQR or DDP. This is currently an active area
of research [XLH17, TMT14, GB17].
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3.3 Continuous-Time LQR

We have so far considered LQR in discrete time. We will now derive the continuous time
version of the LQR controller from the HJB equations. Our discussion of the continuous time
formulation will be limited compared to discrete time, but the same principles and methods
hold in general for both settings. As such, we primarily focus on the discrete time LQR
formulation and provide a discussion of the continuous time formulation for completeness.

We aim to minimize

J(x(0)) =
1

2
xT (tf )Qfx(tf ) +

1

2

∫ tf

0

xT (t)Q(t)x(t) + uT (t)R(t)u(t)dt (3.71)

subject to dynamics
ẋ(t) = A(t)x(t) +B(t)u(t). (3.72)

As in discrete LQR, we will assume Qf , Q(t) are positive semidefinite, and R(t) is positive
definite. We will also assume tf is fixed, and the state and action are unconstrained.

We will write the Hamiltonian,

H =
1

2
xT (t)Q(t)x(t) +

1

2
uT (t)R(t)u(t) + J∗x(x(t), t)T (A(t)x(t) +B(t)u(t)) (3.73)

which yields necessary optimality conditions

0 = ∇uH = R(t)u(t) +BT (t)J∗x(x(t), t). (3.74)

Since ∇2
uuH = R(t) > 0, the control that satisfies the necessary conditions is the global

minimizer. Rearranging, we have

u∗(t) = −R−1(t)BT (t)J∗x(x(t), t) (3.75)

which we can plug back into the Hamiltonian to yield

H =
1

2
xT (t)Q(t)x(t) +

1

2
J∗x(x(t), t)TB(t)R−1(t)BT (t)J∗x(x(t), t) (3.76)

+ J∗x(x(t), t)TA(t)x(t)− J∗x(x(t), t)TB(t)R−1(t)BT (t)J∗x(x(t), t)

=
1

2
xT (t)Q(t)x(t)− 1

2
J∗x(x(t), t)TB(t)R−1(t)BT (t)J∗x(x(t), t) + J∗x(x(t), t)TA(t)x(t).

(3.77)

This gives the HJB equation

0 = J∗t (x(t), t) +
1

2
xT (t)Q(t)x(t)− 1

2
J∗x(x(t), t)TB(t)R−1(t)BT (t)J∗x(x(t), t) (3.78)

+ J∗x(x(t), t)TA(t)x(t)

with boundary condition

J∗(x(tf ), tf ) =
1

2
xT (tf )Qfx(tf ). (3.79)
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It may appear as if we are stuck here, as this form of the HJB doesn’t immediately yield
J∗(x(t), t). Armed with the knowledge that the discrete time LQR problem has a quadratic
cost-to-go, we will cross our fingers and guess a solution of the form

J∗(x(t), t) =
1

2
xT (t)V (t)x(t). (3.80)

Substituting, we have

0 =
1

2
xT (t)V̇ (t)x(t) +

1

2
xT (t)Q(t)x(t) (3.81)

− 1

2
xT (t)V (t)B(t)R−1(t)BT (t)V (t)x(t) + xT (t)V (t)A(t)x(t)

Note that we will decompose

xT (t)V (t)A(t)x(t) =
1

2
xT (t)V (t)A(t)x(t) +

1

2
xT (t)AT (t)V (t)x(t) (3.82)

which yields

0 =
1

2
xT (t)

(
V̇ (t) +Q(t)− V (t)B(t)R−1(t)BT (t)V (t) + V (t)A(t) + AT (t)V (t)

)
x(t).

(3.83)

This equation must hold for all x(t), so

−V̇ (t) = Q(t)− V (t)B(t)R−1(t)BT (t)V (t) + V (t)A(t) + AT (t)V (t) (3.84)

with boundary condition V (tf ) = Qf .
Therefore, the HJB PDE has been reduced to a set of matrix ordinary differential equa-

tions (the Riccati equation). This is integrated backwards in time to find the full control
policy as a function of time. One we have found V (t), the control policy is

u∗(t) = −R−1(t)BT (t)V (t)x(t). (3.85)

Similarly to the discrete case, the feedback gains tend toward constant in the limit of the
infinite horizon problem, under some technical assumptions.

3.4 Linear Quadratic Optimal Control with Imperfect

State Information

Our discussion in this chapter has so far entirely operated under the assumption of perfect
state information, in which we directly observe the state of a Markovian dynamical system.
For many systems, this is an implausible assumption: most measurements will have some
amount of noise. In the remainder of this chapter we will discuss the linear quadratic optimal
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control problem with imperfect state information. In general, imperfect state information
problems do not yield simple Markovian policies. However, in the linear quadratic setting,
with Gaussian process and measurement noise—the so-called LQG problem—we are able
to exactly design an optimal policy. In particular, the LQG setting obeys the separation
principle, in which a state observer and feedback controller can be designed independently,
which in general is not true. As a consequence, the LQG setting provides the basis of much
of the more advanced work in optimal control under uncertainty. We will discuss the LQG
setting in discrete time, before presenting the linear quadratic estimators (equivalently, the
Kalman filter) for both continuous and discrete time, for completeness.

3.4.1 LQG and the Separation Principle

We will again consider quadratic cost of the form

1

2
E

[
xTNQNxN +

N−1∑
k=0

xTkQkxk + uTkRkuk

]
(3.86)

subject to dynamics
xk+1 = Akxk +Bkuk + ωk. (3.87)

We will additionally assume measurements

yk = Ckxk + νk (3.88)

and assume that we may not directly observe x. The initial state x0, and process and
measurements noise ω0:N−1,ν0:N−1 are independent, zero-mean Gaussians. We will write the
covariance of ωk and νk as Σω,k and Σν,k, respectively. We will write Σx,0 for the covariance
of x0.

Recall the dynamic programming equation for incomplete state information,

Jk(ik) = min
uk∈Uk

Exk,ωk,yk+1
[ck(xk,uk,ωk) + Jk+1(ik+1) | ik,uk] (3.89)

for information vector
ik = [yT0 , . . . ,y

T
k ,u

T
0 , . . . ,u

T
k−1]T . (3.90)

Plugging in terms, we have

JN−1(iN−1) =
1

2
min

uN−1∈UN−1

EωN−1,xN−1,yN−1
[xTN−1QN−1xN−1 + uTN−1RkuN−1+ (3.91)

(AN−1xN−1 +BN−1uN−1 + ωN−1)TQN(AN−1xN−1 +BN−1uN−1 + ωN−1) | iN−1,uN−1]

=
1

2
ExN−1

[xTN−1(QN−1 + ATN−1VNAN−1)xN−1 | iN−1] +
1

2
EωN−1

[ωTN−1QN−1ωN−1]+

1

2
min

uN−1∈UN−1

{
uTN−1(BT

N−1VNBN−1 +RN−1)uN−1 + 2E[xN−1 | iN−1]TATN−1VNBN−1uN−1

}
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where the equality between the first and second equation hold as a result of E[ωN−1 | iN−1] =
0. As in our previous derivation of stochastic LQR, we can solve the minimizationo over
actions to yield

u∗N−1 = −(BT
N−1QNBN−1 +RN−1)−1BT

N−1QNAN−1E[xN−1 | iN−1]. (3.92)

Note that this is exactly the standard LQR policy, with the action replaced by the mean
state estimate given all measurements. Substituting this policy back in to the DP recursion,
we have

JN−1(iN−1) =
1

2
ExN−1

[xTN−1VN−1xN−1] + EωN−1
[ωTN−1QNωN−1]+ (3.93)

ExN−1
[(xN−1 − E[xN−1 | iN−1])TPN−1(xN−1 − E[xN−1 | iN−1])]

where

PN−1 = ATN−1QNBN−1(RN−1 +BT
N−1QNBN−1)−1BT

N−1QNAN−1 (3.94)

VN−1 = ATN−1QNAN−1 +QN−1 − PN−1. (3.95)

Note that (3.93) closely matches the cost-to-go of the standard LQR recursion, with the last
term capturing the cost penalty associated with imperfect state estimation. Thus, in the
limit of perfect state information, this penalty term vanishes and the expectation over state
becomes a simple evaluation, yielding the standard stochastic LQR cost-to-go.

One natural question is whether we can extract a recursive DP update scheme, com-
parable to the standard LQR setting, from (3.93). This is non-obvious as term containing
xN−1 − E[xN−1 | iN−1] introduces difficulties to our previous approach. To address this, we
turn to the fact (proved in [Ber12]) that

xk − E[xk | ik] = fk(x0,ω0, . . . ,ωk−1,ν0, . . . ,νk) (3.96)

or equivalently, the estimation error term is independent of the choice of control actions.
This is surprising: no choice of action will allow us to identify the state faster than any
other. However, recall that due to the linearity of the dynamics, we may write the state at
timestep k as a linear function of the initial state, the noise inputs, and the control input.
Thus, the control inputs serve only to shift the mean of the Gaussian state distribution by
Bk−1uk−1 + Ak−1Bk−2uk−2 + . . . + Ak−1 · · ·A1B0u0, which does not change the estimation
problem. As a consequence, the additive estimation penalty is an irreducible constant term.
Thus, the optimal policy can be computed solely via standard Riccati recursion, yielding a
policy of the form

π∗(ik) = LkE[xk | ik] (3.97)

for Lk as defined for standard LQR.
At this point, there are several things to note. Because our choice of action does not

effect estimation, we are free to independently optimize the estimator, and we avoid having
to jointly design the controller and estimator. This is the separation principle. The optimal
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estimator in this case is the Kalman filter, also referred to as the linear quadratic estimator
(LQE). For completeness, we provide the update equations for the LQE below. Moreover,
note that in this case, the policy relies only on the mean state estimate, and does not depend
on e.g. the variance of the estimate. In general, these conditions will not hold. For arbitrary
imperfect state information problems, the optimal estimator and controller must be jointly
designed, as the choice of action will in fact impact estimation. Moreover, the policy will in
general be a function of higher order moments of the state estimate than simply the mean.

3.4.2 Linear Quadratic Estimation

For completeness, we will now provide the Kalman filter update equations for both discrete
and continuous time. We will not provide a derivation of these update rules, but they are
available in many books on estimation.

Discrete Time

The discrete time updates for the Kalman filter take the form

Σk+1|k = ATkΣk|kAk + Σω,k (3.98)

Σk+1|k+1 = Σk+1|k − Σk+1|kC
T
k+1(Ck+1Σk+1|kC

T
k+1 + Σ−1

ν,k+1)−1Ck+1Σk+1|k (3.99)

x̂k+1 = Akx̂k +Bkuk + Σk+1|k+1C
T
k+1Σ−1

ν,k+1(yk+1 − Ck+1(Akx̂k +Bkuk)) (3.100)

with initializations

Σ0|0 = Σx,0 − Σx,0C
T
0 (C0Σx,0C

T
0 + Σν,0)−1C0Σx,0 (3.101)

x̂0 = E[x0] + Σ0|0C
T
0 Σ−1

ν,0(y0 − C0E[x0]). (3.102)

Continuous Time

We consider dynamics of the form

ẋ(t) = A(t)x(t) +B(t)u(t) + ω(t) (3.103)

y(t) = C(t)x(t) + ν(t) (3.104)

where ω(t) ∼ N (0,Σω(t)). ν(t) ∼ N (0,Σν(t)), and the initial state x(0) ∼ N (x̄0,Σ0) The
continuous time Kalman filter takes the form

Σ̇(t) = A(t)Σ(t) + Σ(t)AT (t) + Σω(t)− Σ(t)CT (t)Σ−1
ν (t)C(t)Σ(t) (3.105)

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + Σ(t)CT (t)Σ−1
ν (t)(y(t)− C(t)x̂(t)) (3.106)

with initialisations

Σ(0) = Σ0 (3.107)

x̂(0) = x̄0. (3.108)
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3.5 Bibliographic Notes

A comprehensive coverage of linear quadratic methods for optimal control is Anderson and
Moore [AM07]. LQG is covered in discrete time in [Ber12]. The original, comprehensive
reference on DDP is [JM70], but a large body of literature on the method has been produced
since then. The original papers on iLQR are [TL05, LT04].
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Chapter 4

Indirect Methods

4.1 Calculus of Variations

We will begin by restating the optimal control problem. We will to find an admissible control
sequence u∗ which causes the system

ẋ = f(x(t),u(t), t) (4.1)

to follow an admissible trajectory x∗ that minimizes the functional

J = cf (x(tf ), tf ) +

∫ tf

t0

c(x(t),u(t), t)dt. (4.2)

To find the minima of functions of a finite number of real numbers, we rely on the first order
optimality conditions to find candidate minima, and use higher order derivatives to determine
whether a point is a local minimum. Because we are minimizing a function that maps from
some n dimensional space to a scalar, candidate points have zero gradient in each of these
dimensions. However, in the optimal control problem, we have a cost functional, which maps
functions to scalars. This is immediately problematic for our first order conditions — we
are required to check the necessary condition at infinite points. The necessary notion of
optimality conditions for functionals is provided by calculus of variations.

Concretely, we define a functional J as a rule of correspondence assigning each function
x in a class Ω (the domain) to a unique real number. The functional J is linear if and only
if

J(α1x1 + α2x2) = α1J(x1) + α2J(x2) (4.3)

for all x1,x2, α1x1 + α2x2 in Ω. We must now define a notion of “closeness” for functions.
Intuitively, two points being close together has an immediate geometric interpretation. We
first define the norm of a function. The norm of a function is a rule of correspondence that
assigns each x ∈ Ω, defined over t ∈ [t0, tf ], a real number. The norm of x, which we denote
‖x‖, satisfies:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 iff x(t) = 0 for all t ∈ [t0, tf ]
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2. ‖αx‖ = |α|‖x‖ for all real numbers α

3. ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖.
To compare the closeness of two functions y, z, we let x(t) = y(t) − z(t). Thus, for two
identical functions, ‖x‖ is zero. Generally, a norm will be small for “close” functions, and
large for “far apart” functions. However, there exist many possible definitions of norms that
satisfy the above conditions.

4.1.1 Extrema for Functionals

A functional J with domain Ω has a local minimum at x∗ ∈ Ω if there exists an ε > 0 such
that J(x) ≥ J(x∗) for all x ∈ Ω such that ‖x−x∗‖ < ε. Maxima are defined similarly, just
with J(x) ≤ J(x∗).

Analogously to optimization of functions, we define the variation of the functional as

∆J(x, δx) := J(x+ δx)− J(x) (4.4)

where δx(t) is the variation of x(t). The increment of a functional can be written as

∆J(x, δx) = δJ(x, δx) + g(x, δx)‖δx‖ (4.5)

where δJ is linear in δx. If
lim
‖δx‖→0

{g(x, δx)} = 0 (4.6)

then J is said to be differentiable on x and δJ is the variation of J at x. We can now state
the fundamental theorem of the calculus of variations.

Theorem 4.1.1 (Fundamental Theorem of CoV). Let x(t) be a vector function of t in the
class Ω, and J(x) be a differentiable functional of x. Assume that the functions in Ω are
not constrained by any boundaries. If x∗ is an extremal, the variation of J must vanish at
x∗, that is δJ(x∗, δx) = 0 for all admissible δx (i.e. such that x+ δx ∈ Ω).

Proof. [Kir12], Section 4.1.

We will now look at how calculus of variations may be leveraged to approach practical
problems. Let x be a scalar continuous function in C1. We would like to find a function x∗

for which the functional

J(s) =

∫ tf

t0

g(x(t), x(t), t)dt (4.7)

has a relative extremum. We will assume g ∈ C2, that t0, tf are fixed, and x0, xf are fixed.
Let x be any curve in Ω, and we will write the variation δJ from the increment

∆J(x, δx) = J(x+ δx)− J(x) (4.8)

=

∫ tf

t0

g(x+ δx, ẋ+ δẋ, t)dt−
∫ tf

t0

g(x, ẋ, t)dt (4.9)

=

∫ tf

t0

g(x+ δx, ẋ+ δẋ, t)− g(x, ẋ, t)dt. (4.10)
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Expanding via Taylor series, we get

∆J(x, δx) =

∫ tf

t0

g(x, ẋ, t) +
∂g

∂x︸︷︷︸
gx

(x, ẋ, t)δx+
∂g

∂ẋ︸︷︷︸
gẋ

(x, ẋ, t)δẋ+ o(δx, δẋ)− g(x, ẋ, t)dt (4.11)

which yields the variation

δJ =

∫ tf

t0

gx(x, ẋ, t)δx+ gẋ(x, ẋ, t)δẋ dt. (4.12)

Integrating by parts, we have

δJ =

∫ tf

t0

[
gx(x, ẋ, t)−

d

dt
gẋ(x, ẋ, t)

]
δxδt+ [gẋ(x, ẋ, t)δx(t)]

tf
t0 . (4.13)

We have assumed x(t0), x(tf ) given, and thus δx(t0) = 0, δx(tf ) = 0. Considering an
extremal curve, applying the CoV theorem yields∫ tf

t0

[
gx(x, ẋ, t)−

d

dt
gẋ(x, ẋ, t)

]
δxδt. (4.14)

We can now state the fundamental lemma of CoV. We will state it for vector functions,
although our derivation was for the scalar case.

Lemma 4.1.2 (Fundamental Lemma of CoV). If a function h is continuous and∫ tf

t0

h(t)δx(t)dt = 0 (4.15)

for every function δx that is continuous in the interval [t0, tf ], then h must be zero everywhere
in the interval [t0, tf ].

Proof. [Kir12], Section 4.2.

Applying the fundamental lemma, we find that a necessary condition for x∗ being an
extremal is

gx(x, ẋ, t)− d

dt
gẋ(x, ẋ, t) = 0 (4.16)

for all t ∈ [t0, tf ], which is the Euler equation. This is a nonlinear, time-varying second-order
ordinary differential equation with split boundary conditions (at x(t0) and x(tf )).
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4.1.2 Generalized Boundary Conditions

In the previous subsection, we assumed that t0, tf ,x(t0),x(tf ) were all given. We will now
relax that assumption. In particular, tf may be fixed or free, and each component of x(tf )
may be fixed or free.

We begin by writing the variation around x∗

δJ = [gẋ(x∗(tf ), ẋ
∗(tf ), tf )]

T δx(tf ) + [g(x∗(tf ), ẋ
∗(tf ), tf )]

T δtf (4.17)

+

∫ tf

t0

[
gx(x∗, ẋ∗, t)− d

dt
gẋ(x∗, ẋ∗, t)

]T
δxδt

by using the same integration by parts approach as before. Note that for fixed tf and x(tf ),
the variations δtf and δx(tf ) vanish, and so we are left with (4.14). Because δtf and δx(tf )
do not vanish in this case, we are left with additional boundary conditions that must be
satisfied. Note that

δxf = δx(tf ) + ẋ∗(tf )δtf (4.18)

and substituting this, we have

δJ = [gẋ(x∗(tf ), ẋ
∗(tf ), tf )]

T δxf +
[
g(x∗(tf ), ẋ

∗(tf ), tf )− gTẋ (x∗(tf ), ẋ
∗(tf ), tf )ẋ

∗(tf )
]
δtf

(4.19)

+

∫ tf

t0

[
gx(x∗, ẋ∗, t)− d

dt
gẋ(x∗, ẋ∗, t)

]
δxδt.

Stationarity of this variation thus requires

gẋ(x∗(tf ), ẋ
∗(tf ), tf ) = 0 (4.20)

if xf is free, and

g(x∗(tf ), ẋ
∗(tf ), tf )− gTẋ (x∗(tf ), ẋ

∗(tf ), tf )ẋ
∗(tf ) = 0 (4.21)

if tf is free, in addition to the Euler equation being satisfied. For a complete reference on the
boundary conditions associated with a variety of problem specifications, we refer the reader
to Section 4.3 of [Kir12].

4.1.3 Constrained Extrema

Previously, we have not considered constraints in the variational problem. However, con-
straints (and in particular, dynamics constraints) are central to most optimal control prob-
lems. Let w ∈ Rn+m be a vector function in C1. As previously, we would like to find a
function w∗ for which the functional

J(w) =

∫ tf

t0

g(w(t), ẇ(t), t)dt (4.22)
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has a relative extremum, although we additionally introduce the constraints

fi(w(t), ẇ(t), t) = 0, i = 1, . . . , n. (4.23)

We will again assume g ∈ C2 and that t0,w(t0) are fixed. Note that as a result of these n
constraints, only m of the n+m components of w are independent.

One approach to solving this constrained problem is re-writing the n dependent compo-
nents of w in terms of the m independent components. However, the nonlinearity of the
constraints typically makes this infeasible. Instead, we will turn to Lagrange multipliers. We
will write our augmented functional as

ĝ(w(t), ẇ(t),p(t), t) := g(w(t), ẇ(t), t) + pT (t)f(w(t), ẇ(t), t) (4.24)

where p(t) are Lagrange multipliers that are functions of time. Based on this, a necessary
condition for optimality is

ĝw(w∗(t), ẇ∗(t),p∗(t), t)− d

dt
ĝẇ(w∗(t), ẇ∗(t),p∗(t), t) = 0 (4.25)

with
f(w∗(t), ẇ∗(t), t) = 0. (4.26)

4.2 Indirect Methods for Optimal Control

Having built the foundations of functional optimization via calculus of variations, we will now
derive the necessary conditions for optimal control under the assumption that the admissible
controls are not bounded. The problem, as previously stated, is to find an admissible control
u∗ which causes the system

ẋ(t) = f(x(t),u(t), t) (4.27)

to follow an admissible trajectory x∗ that minimizes the functional

J(u) = cf (x(tf ), tf ) +

∫ tf

t0

c(x(t),u(t), t)dt (4.28)

under the assumptions that cf ∈ C2, the state and control are unconstrained, and t0,x(t0)
are fixed. We define the Hamiltonian as

H(x(t),u(t),p(t), t) := c(x(t),u(t), t) + pT (t)f(x(t),u(t), t). (4.29)

Then, the necessary conditions are

ẋ∗(t) =
∂H
∂p

(x∗(t),u∗(t),p∗(t), t) (4.30)

ṗ∗(t) = −∂H
∂x

(x∗(t),u∗(t),p∗(t), t) (4.31)

0 =
∂H
∂u

(x∗(t),u∗(t),p∗(t), t) (4.32)
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which must hold for all t ∈ [t0, tf ]. Additionally, the boundary conditions

[
∂cf
∂x

(x∗(tf ), tf )− p∗(tf )]T δxf (4.33)

+ [H(x∗(tf ),u
∗(tf ),p

∗(tf ), tf ) +
∂cf
∂t

(x∗(tf ), tf )]δtf = 0

must be satisfied. Note that as in the previous section, they are automatically satisfied
if the terminal state and time are fixed. Based on these necessary conditions, we have
a set of 2n first-order differential equations (for the state and co-state), and a set of m
algebraic equations (control equations). The solution to the state and co-state equations
will contain 2n constants of integration. To solve for these constants, we use the initial
conditions x(t0) = x0 (of which there are n), and an additional n (or n+ 1) equations from
the boundary conditions. We are left with a two-point boundary value problem, which are
considerably more difficult to solve than initial value problems which can just be integrated
forward. For a full review of boundary conditions, we again refer the reader to [Kir12].

4.2.1 Proof of the Necessary Conditions

We will now prove the necessary conditions, (4.30 – 4.32), along with the boundary conditions
(4.42). For simplicity, assume that the terminal cost is zero, and that tf ,x(tf ) are fixed and
given. Consider the augmented cost function

ĉ(x(t), ẋ(t),u(t),p(t), t) := c(x(t),u(t), t) + pT (t)[f(x(t),u(t), t)− ẋ(t)]. (4.34)

When the constraint holds, this augmented cost function is exactly equal to the original cost
function. The augmented total cost is then

Ĵ(u) =

∫ tf

t0

ĉ(x(t), ẋ(t),u(t),p(t), t)dt. (4.35)

Applying the fundamental theorem of CoV on an extremal, we have

0 =δĴ(u) =

∫ tf

t0


∂c
∂x

(x∗(t),u∗(t),t)+ ∂f
∂x

T
(x∗(t),u∗(t),t)p∗(t)︷ ︸︸ ︷

∂ĉ

∂x
(x∗(t), ẋ∗(t),u∗(t),p∗(t), t) −

− d
dt

(−p∗(t))︷ ︸︸ ︷
d

dt

∂ĉ

∂ẋ
(x∗(t), ẋ∗(t),u∗(t),p∗(t), t)


T

δx(t)

(4.36)

+

[
∂ĉ

∂u
(x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

]T
δu(t) +

[
∂ĉ

∂p
(x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

]T
︸ ︷︷ ︸

f(x∗(t),u∗(t),t)−ẋ∗(t)

δp(t)dt.

Considering each term in sequence, we have:
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• f(x∗(t),u∗(t), t)− ẋ∗(t) = 0 on an extremal.

• The Lagrange multipliers are arbitrary, so we can select them to make the coefficients

of δx(t) equal to zero, giving ṗ(t) = − ∂c
∂x

(x∗(t),u∗(t), t)− ∂f
∂x

T
(x∗(t),u∗(t), t)p∗(t).

• The remaining variation δu(t) is independent, so its coefficient must be zero, thus
∂c
∂u

(x∗(t),u∗(t), t) + ∂f
∂u

T
(x∗(t),u∗(t), t)p∗(t) = 0.

These conditions exactly give the necessary conditions as previously stated, when recast with
the Hamiltonian formalism.

4.3 Pontryagin’s Minimum Principle

So far, we have assumed that the admissible controls and states are unconstrained. This
assumption is frequently violated for real systems—physical actuators have limits on their
realizable outputs, and state constraints may occur due to safety considerations. The control
u∗ causes the functional J to have a relative minimum if

J(u)− J(u∗) = ∆J ≥ 0 (4.37)

for all admissible controls “close” to u∗. Letting u = u∗+δu, the increment can be expressed
as

∆J(u∗, δu) = δJ(u∗, δu) + higher order terms. (4.38)

The variation δu is arbitrary only if the extremal control is strictly within the boundary for all
time in the interval [t0, tf ]. In general, however, an extremal control lies on a boundary during
at least subinterval in the interval [t0, tf ]. As a consequence, admissible control variations
δu exist whose negatives are not admissible. This implies that a necessary condition for u∗

to minimize J is δJ(u∗, δu) ≥ 0 for all admissible variations with ‖δu‖ small enough. The
reason why the equality in the fundamental theorem of CoV (in which we explicitly assumed
no constraints) is replaced with an inequality is the presence of the control constraints. This
result has an analogue in calculus, where the necessary condition for a scalar function f to
have a relative minimum at the end point is that the differential df ≥ 0.

Assuming bounded controls u ∈ U , the necessary optimality conditions are

ẋ∗(t) =
∂H
∂p

(x∗(t),u∗(t),p∗(t), t) (4.39)

ṗ∗(t) = −∂H
∂x

(x∗(t),u∗(t),p∗(t), t) (4.40)

H(x∗(t),u∗(t),p∗(t), t) ≤ H(x∗(t),u(t),p∗(t), t) ∀u ∈ U (4.41)

along with the boundary conditions

[
∂cf
∂x

(x∗(tf ), tf )− p∗(tf )]T δxf (4.42)

+ [H(x∗(tf ),u
∗(tf ),p

∗(tf ), tf ) +
∂cf
∂t

(x∗(tf ), tf )]δtf = 0.
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The control u∗(t) causes H(x∗(t),u∗(t),p∗(t), t) to assume its global minimum. This is a
harder condition, in general, to analyze. Finally, we have additional necessary conditions. If
the final time is fixed and the Hamiltonian does not explicitly depend on time,

H(x∗(t),u∗(t),p∗(t)) = c ∀t ∈ [t0, tf ] (4.43)

and if the final time is free and the Hamiltonian does not depend explicitly on time,

H(x∗(t),u∗(t),p∗(t)) = 0 ∀t ∈ [t0, tf ]. (4.44)

Note that in general, uniqueness and existence are not guaranteed in the constrained setting.

4.4 Numerical Aspects of Indirect Optimal Control

4.5 Bibliographic Notes

For a practical treatment of indirect methods, we refer the reader to [BH75]. For a more
theoretical treatment, we refer the reader to [LM67].
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Chapter 5

Direct Methods for Optimal Control

In the previous section we considered indirect methods to optimal control, in which the
necessary conditions for optimality were first applied, yielding a two-point boundary value
problem that was solved numerically. We will now consider the class of direct methods,
in which the optimal control problem is first discretized, and then the resulting discrete
optimization problem is solved numerically.

5.1 Direct Methods

We will write our original continuous optimal control problem,

min
u

∫ tf

0

c(x(t),u(t), t)dt

s.t. ẋ(t) = f(x(t),u(t), t), t ∈ [0, tf ]

x(0) = x0

x(tf ) ∈Mf

u(t) ∈ U , t ∈ [0, tf ]

(5.1)

where Mf = {x ∈ Rn : F (x) = 0} and where we have, for simplicity, assumed zero
terminal cost and t0 = 0. We will use forward Euler discretization of the dynamics. We
select a discretization 0 = t0 < t1 < . . . < tN = tf for the interval [0, tf ], and we will
write xi+1 ≈ x(t),ui ≈ u(t) for t ∈ [ti, ti+1], and x0 ≈ x(0). Denoting hi = ti+1 − ti,
the continuous time optimal control problem is transcibed into the nonlinear constrained
optimization problem

min
x,u

N−1∑
i=0

hic(xi,ui, ti)

s.t. xi+1 = xi + hif(xi,ui, ti), i = 0, . . . , N − 1

xN ∈Mf

ui ∈ U , i = 0, . . . , N − 1

(5.2)

63



5.1.1 Consistency of Time Discretization

Having performed this discretization, a reasonable (and important) sanity check on the
validity of the direct approach is whether we recover the original problem in the limit of
hi → 0. For simplicity, we will drop the time-dependence of the cost and dynamics. We will
write the Lagrangian for (5.2) as

L =
N−1∑
i=0

hic(xi,ui) +
N−1∑
i=0

λTi (xi + hif(xi,ui)− xi+1). (5.3)

Then, the KKT conditions are

0 = hi
∂c

∂xi
(xi,ui) + λi − λi−1 + hi

∂f

∂xi

T

(xi,ui)λi (5.4)

0 = hi
∂c

∂ui
(xi,ui) + hi

∂f

∂ui

T

(xi,ui)λi (5.5)

Rearranging, we have

λi − λi−1

hi
= − ∂f

∂xi

T

(xi,ui)λi −
∂c

∂xi
(xi,ui) (5.6)

0 =
∂f

∂ui

T

(xi,ui)λi +
∂c

∂ui
(xi,ui). (5.7)

Let p(t) = λi for t ∈ [ti, ti+1], i = 0, . . . , N − 1 and p(0) = λ0. Then, the above are direct
discretizations of the necessary conditions for (6.22),

ṗ(t) = −∂f
∂x

T

(x(t),u(t))pi −
∂c

∂x
(x(t),u(t)) (5.8)

0 =
∂f

∂u

T

(x(t),u(t))p(t) +
∂c

∂u
(x(t),u(t)). (5.9)

5.2 Transcription Methods

A fundamental choice in the design of numerical algorithms for direct optimization of the
discretized optimal control problem is whether to optimize over the state and action variables
(a method known as collocation or simultaneous optimization) or strictly over the action
variables (known as shooting).

5.2.1 Collocation Methods

Collocation methods optimize both the state variables and the control input at a fixed, finite
number of times, t0, . . . , ti, . . . , tN . Moreover, the dynamics constraints are enforced at these
points. As such, it is necessary to choose a finite-dimensional representation of the trajectory
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between these points. This rough outline leaves unspecified a large number of algorithmic
design choices.

First, how are the dynamics constraints enforced? Both derivative and integral con-
straints exist. The derivative approach enforces that the derivative of the state with respect
to time of the parameterized trajectory is equal to the given system dynamics. The integral
approach relies on integrating the given dynamics and enforcing agreement between this and
the trajectory parameterization. In these notes, we will focus on the derivative approach.

Second, a choice of trajectory parameterization is required. We will primarily discuss
Hermite-Simpson methods in herein, which parameterize each subinterval of the trajectory
(in [ti, ti+1]) with a cubic polynomial. Note that the choice of a polynomial results in integral
and derivative constraints being relatively simple to evaluate. However, a wide variety of
parameterizations exist. For example, pseudospectral methods represent the entire trajectory
as a single high-order polynomial.

We will now outline the Hermite-Simpson method as one example of direct collocation.
Having selected a discretization 0 = t0 < t1 < . . . < tN = tf , we denote hi = ti+1 − ti. In
every subinterval [ti, ti+1], we approximate x(t) with a cubic polynomial

x(t) = ci0 + ci1(t− ti) + ci2(t− ti)2 + ci3(t− ti)3 (5.10)

which yields derivative

x(t) = ci1 + 2ci2(t− ti) + 3ci3(t− ti)2. (5.11)

Writing xi = x(ti),xi+1 = x(ti+1), ẋi = ẋ(ti), ẋi+1 = ẋ(ti+1), we may write
xi
ẋi
xi+1

ẋi+1

 =


I 0 0 0
0 I 0 0
I hiI h2

i I h3
i I

0 I 2hiI 3h2
i I



ci0
ci1
ci2
ci3

 (5.12)

which in turn results in
ci0
ci1
ci2
ci3

 =


I 0 0 0
0 I 0 0
− 3
h2
i
I − 2

hi
I 3

h2
i
I − 1

hi
I

2
h2
i
I 1

h2
i
I − 2

h3
i
I 1

h2
i
I



xi
ẋi
xi+1

ẋi+1

 . (5.13)

Choosing intermediate times tci = ti + hi
2

(collocation points), we can define interpolated

controls uci = ui+ui+1

2
. From the above, we have

xci :=x(ti +
hi
2

) =
1

2
(xi + xi+1) +

hi
8

(f(xi,ui, ti)− f(xi+1,ui+1, ti+1)) (5.14)

ẋci :=ẋ(ti +
hi
2

) = − 3

2hi
(xi + xi+1)− 1

4
(f(xi,ui, ti) + f(xi+1,ui+1, ti+1)). (5.15)
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Thus, we can write our discretized problem as

min
u0:N−1,x0:N

N−1∑
i=0

hic(x(t),u(t), t)

s.t. ẋci − f(xci ,u
c
i , t

c
i) = 0, i = 0, . . . , N − 1

F (xN) = 0

u(t) ∈ U , i = 0, . . . , N − 1

(5.16)

5.2.2 Shooting Methods

Shooting methods solve the discrete optimization problem via optimizing only over the con-
trol inputs, and integrating the dynamics forward given these controls. A simple approach
to the forward integration is the approach we have discussed above, in which forward Eu-
ler integration is used. Single-shooting methods directly optimize the controls for the entire
problem. These approaches are fairly efficient for low dimension, short horizon problems, but
typically struggle to scale to larger problems. Multiple shooting methods, on the other hand,
optimize via shooting over subcomponents of the problem, and enforce agreement between
the trajectory segments generated via shooting within each subproblem. These methods are
therefore a combination of shooting methods and collocation methods. Generally, numerical
solvers for shooting problems will, given an initial action sequence, linearize the trajectory
and optimize the objective function with respect to those linearized dynamics to obtain new
control inputs.

5.2.3 Sequential Convex Programming

Direct optimization of the discretized nonlinear control problem typically results in a non-
convex optimization problem, for which finding a good solution may be difficult or impossible.
The source of this non-convexity is typically the dynamics (and sometimes the cost function).
The key idea of sequential convex programming (SCP) is to iterative re-linearize the dynamics
(and construct a convex approximation of the cost function, if it is non-convex) around a
nominal trajectory.

First, we will assume for this outline that the cost c is convex. Let (x0(·),u0(·)) be a
nominal tuple of trajectory and control (which is not necessarily feasible). We linearize the
dynamics around this trajectory:

f1(x,u, t) = f(x0(t),u0(t), t)+
∂f

∂x
(x0(t),u0(t), t)(x−x0(t))+

∂f

∂u
(x0(t),u0(t), t)(u−u0(t)).

(5.17)
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We can then solve the linear optimal control problem (with k = 0, initially),

min

∫ tf

0

c(x(t),u(t), t)dt

s.t. ẋ(t) = fk+1(x(t),u(t), t), t ∈ [0, tf ]

x(0) = x0

x(tf ) = xf

u(t) ∈ U , t ∈ [0, tf ]

(5.18)

where the dynamics are linear and the cost function is quadratic. Discretizing this continuous
control problem yields a tractable convex optimization problem with dynamics xi+1 = xi +
hif(xi,ui, ti), i = 0, . . . , N − 1. We then iterate this procedure until convergence is achieved
with the new trajectory.

5.3 Bibliographic Notes

A broad introduction to direct methods for trajectory optimization is presented in [Kel17b].
This tutorial also features a discussion of trajectory optimization for hybrid systems, which
we have not discussed in this section, as well as numerical solver features. For a more
comprehensive review of direct methods for trajectory optimization by the same author with
an emphasis on collocation methods, see [Kel17a].
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Chapter 6

Model Predictive Control

Both direct and indirect methods for open-loop control result in trajectories that must be
tracked with an auxiliary controller, if there is any mismatch between the systems model and
the true system. This often results in a decoupling of the auxiliary controller from the original
optimal control problem, which may result in performance degradation. Alternatively, the
auxiliary controller may not be able to take into account other problem considerations such
as state or control constraints. In this section, we introduce model predictive control, which
applies the ideas from direct methods for trajectory generation online to iteratively replan,
and thus results in a closed-loop controller.

6.1 Overview of MPC

Model predictive control entails solving finite-time optimal control problems in a receding
horizon fashion (and thus is also frequently referred to as receding horizon control). The
rough structure of model predictive control algorithms is

• At each sampling time t, solve an open-loop optimal control problem over a finite
horizon

• Apply the generated optimal input signal during the subsequent sampling interval
[t, t+ 1)

• At the next time step t + 1, solve the new optimal control problem based on new
measurements of the state over a shifted horizon

Consider the problem of regulating to the origin the discrete-time linear time-invariant
system

x(t+ 1) = Ax(t) +Bu(t) (6.1)

for x(t) ∈ Rn, u(t) ∈ Rm, subject to constraints x(t) ∈ X ,u(t) ∈ U , t ≥ 0, where X ,U are
polyhedra. We will assume the full state measurement is available at time t. Given this, we

69



can state the finite-time optimal control problem solved at each stage, t, as

min
ut|t,...,ut+N−1|t

cf (xt+N |t) +
N−1∑
k=0

c(xt+k|t,ut+k|t)

s.t. xt+k+1|t = Axt+k|t +But+k|t, k = 0, . . . , N − 1

xt+k|t ∈ X , k = 0, . . . , N − 1

ut+k|t ∈ U , k = 0, . . . , N − 1

xt+N |t ∈ Xf ,
xt|t = x(t)

(6.2)

for which we write the solution as J∗t (x(t)). In this problem, xt+k|t and ut+k|t are the state
and action predicted at time t + k from time t. Letting U∗t→t+N |t := {u∗t|t, . . . ,u∗t+N−1|t}
denote the optimal solution, we take u(t) = u∗t|t(x(t)). This optimization problem is then

repeated at time t+ 1, based on the new state xt+1|t+1 = x(t+ 1). Defining the closed-loop
control policy as πt(x(t)) := u∗t|t(x(t)), we have the closed-loop dynamics

x(t+ 1) = Ax(t) +Bπt(x(t)). (6.3)

Thus, the central question of this formulation becomes characterizing the behavior of the
closed-loop system defined by this iterative re-optimization. As the problem is time-invariant,
we can rewrite the closed-loop dynamics as

x(t+ 1) = Ax(t) +Bπ(x(t)). (6.4)

The rough structure of the online model predictive control framework is then as follows:

1. Measure the state x(t) at every time t

2. Obtain U∗0 (x(t)) by solving finite-time optimal control problem

3. If U∗0 (x(t)) = ∅ then ‘problem infeasible’, stop

4. Apply the first element u∗0 of U∗0 (x(t)) to the system

5. Wait for the new sampling time t+ 1

This framework leads to two main implementation issues. First, the controller may lead us
into a situation where after a few steps the finite-time optimal control problem is infeasible,
which we refer to as the persistent feasibility issue. Even if the feasibility problem does not
occur, the generated control inputs may not lead to trajectories that converge to the origin,
which we refer to as the stability issue. The key question in the analysis of MPC algorithms is
how we may guarantee that our “short-sighted” control strategy leads to effective long-term
behavior. While one possible approach is directly analyzing the closed-loop dynamics, this is
in practice very difficult. Our approach will instead be to derive conditions on the terminal
function cf and terminal constraint set Xf so that the persistent feasibility and closed-loop
stability are guaranteed.
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6.2 Feasibility

Model predictive control simplifies the online control optimization problem by solving a
shorter horizon problem, as opposed to solving the full optimal control problem online at
each timestep. This myopic optimization leads to the possibility that after several steps, the
problem may no longer be feasible. As such, in this section we will discuss approaches to
impose constraints on so-called recursive feasibility to avoid this problem.

Let

X0 := {x ∈ X | ∃(u0, . . . ,uN−1) s.t. xk ∈ X ,uk ∈ U , k = 0, . . . , N − 1, (6.5)

xN ∈ Xf , where xk+1 = Axk +Buk, k = 0, . . . , N − 1}

be the set of feasible initial states. Simply, this set is the set of initial states for which a
sequence of control inputs exist that cause the final state to satisfy the terminal constraint.
For the autonomous system x(t + 1) = φ(x(t)) with constraints x(t) ∈ X ,u(t) ∈ U , the
one-step controllable set to set S is defined as

Pre(S) := {x ∈ Rn : φ(x) ∈ S}. (6.6)

For the system x(t + 1) = φ(x(t),u(t)) with constraints x(t) ∈ X ,u(t) ∈ U , the one-step
controllable set to set S is defined as

Pre(S) := {x ∈ Rn : ∃u ∈ U s.t. φ(x,u) ∈ S}. (6.7)

A set C ⊆ X is said to be a control invariant set for the system x(t+ 1) = φ(x(t),u(t)) with
constraints x(t) ∈ X ,u(t) ∈ U , if

x(t) ∈ C =⇒ ∃u ∈ U s.t. φ(x(t),u(t)) ∈ C, ∀t. (6.8)

The set C∞ ⊂ X is said to the maximal control invariant set for the system x(t + 1) =
φ(x(t),u(t)) with constraints x(t) ∈ X ,u(t) ∈ U , if it control invariant all control invariant
sets contained in X 1.

We will now proceed to derive critical results on recursive feasibility for linear dynamical
systems. We will define the “truncated” feasibility set

X1 := {x ∈ X | ∃(u1, . . . ,uN−1) s.t. xk ∈ X ,uk ∈ U , k = 1, . . . , N − 1, (6.9)

xN ∈ Xf , where xk+1 = Axk +Buk, k = 1, . . . , N − 1}.

Then, we may state the following result on feasibility.

Lemma 6.2.1 (Persistent Feasibility). If set X1 is a control invariant set for system x(t+
1) = Ax(t) +Bu(t), x(t) ∈ X ,u(t) ∈ U , then the MPC law is persistently feasible.

1Control invariant sets can be computed using the MPT toolbox: www.mpt3.org
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Proof. Note that

Pre(X1) := {x ∈ Rn : ∃u ∈ U s.t. Ax+Bu ∈ X1}. (6.10)

Since X1 is control invariant, there exists u ∈ U such that Ax + Bu ∈ X1 for all x ∈ X1.
Thus, X1 ⊆ X1 ∩ X . One may write

X0 = {x0 ∈ X | ∃u0 ∈ U s.t. Ax0 +Bu0 ∈ X1} = Pre(X1) ∩ X . (6.11)

This then implies X1 ⊆ X0. Choose some x0 ∈ X0. Let U∗0 be the solution to the finite-time
optimization problem, and u∗0 be the first control. Let x1 = Ax0 +Bu∗0. Since U∗0 is feasible,
one has x1 ∈ X1. Since X1 ⊆ X0, x1 ∈ X0, and hence the next optimization problem is
feasible.

For N = 1, we may set Xf = X1. If the terminal set is chosen to be control invariant,
then MPC problem will be persistently feasible independent of chosen control objectives
and parameters. The system designer may then choose the parameters to affect the system
performance. The logical question, then, is how to extent this result to N > 1, for which we
have the following result.

Theorem 6.2.2 (Persistent Feasibility). If Xf is a control invariant set for the the system
x(t + 1) = Ax(t) + Bu(t), x(t) ∈ X ,u(t) ∈ U , t ≥ 0, then the MPC law is persistently
feasible.

Proof. We will begin by defining the “truncated” feasibility set at step N − 1,

XN−1 := {xN−1 ∈ X | ∃uN−1 s.t. xN−1 ∈ X ,uN−1 ∈ U (6.12)

xN ∈ Xf , where xN = AxN−1 +BuN−1}.

Due to the terminal constraints, have AxN−1 + BuN−1 = xN ∈ Xf . Since Xf is a control
invariant set, there exists a u ∈ U such that x+ = AxN +Bu ∈ Xf . This is the requirement
that xN ∈ XN−1. Thus, XN−1 is control invariant. Repeating this argument, one can
recursively show that XN−2, . . . ,X1 are control invariant, and the persistent feasibility lemma
then applies.

Practically, we introduce the terminal set Xf artificially for the purpose of leading to a
sufficient condition for persistent feasibility. We would like to choose it to be large, so that
is avoids compromising closed-loop performance.

6.3 Stability

Persistent feasibility does not guarantee that the closed-loop trajectories converge toward
the desired equilibrium point. One of the most popular approaches to guarantee persistent
feasibility and stability of the MPC law makes use of a control invariant terminal set Xf
for feasibility, and a terminal function cf (·) for stability. To prove stability, we leverage
Lyapunov stability theory.
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Theorem 6.3.1 (Lyapunov Stability). Consider the equilibrium point x = 0 for the au-
tonomous system xk+1 = f(xk) (with f(0) = 0). Let Ω ⊂ Rn be a closed and bounded set
containing the origin. Let V : Rn → R be a function, continuous at the origin, such that

V (0) = 0 and V (x) > 0, ∀x ∈ Ω \ {0} (6.13)

V (xk+1)− V (xk) < 0, ∀x ∈ Ω \ {0}. (6.14)

Then x = 0 is asymptotically stable in Ω.

We will utilize this result to show that with appropriate choices of Xf and cf (·), J∗0 is a
Lyapunov function for the closed-loop system.

Theorem 6.3.2 (MPC Stability (for Quadratic Cost)). Assume

1. Q = QT > 0, R = RT > 0, Qf > 0

2. Sets X ,Xf , and U contain the origin in their interior and are closed

3. Xf ⊆ X is control invariant

4. minv∈U ,Ax+Bv∈Xf {−cf (x) + c(x,v) + cf (Ax+Bv)} ≤ 0,∀x ∈ Xf .

Then, the origin of the closed-loop system is asymptotically stable with domain of attraction
Xf .

Proof. Note that via assumption 3, persistent feasibility is guaranteed for any Qf , Q,R.
We want to show that J∗0 is a Lyapunov function for the closed-loop system x(t + 1) =
fcl(x(t)) = Ax(t)+Bπ(x(t)), with respect to the equilibrium fcl(0) = 0 (the origin is indeed
an equilibrium as 0 ∈ X , 0 ∈ U , and the cost is positive for any non-zero control sequence.
Note also that X0 is closed and bounded, and J∗0 (0) = 0, both by assumption. Note also
that J∗0 (x) > 0 for all x ∈ X0 \ {0}.

We will now show the decay property. Since the setup is time-invariant, we can study
the decay property between t = 0 and t = 1. Let x(0) ∈ X0, let U

[0]
0 = [u

[0]
0 , . . . ,u

[0]
N−1] be

the optimal control sequence, and let [x(0), . . . ,x
[0]
N ] be the corresponding trajectory. Af-

ter applying u
[0]
0 , one obtains x(1) = Ax(0) + Bu

[0]
0 . Now, consider the sequence of control

[u
[0]
1 , . . . ,u

[0]
N−1,v], where v ∈ U and the corresponding state trajectory is [x(1), . . . ,x

[0]
N , Ax

[0]
N +

BV ]. Since x
[0]
N ∈ Xf (by the terminal constraint), and since Xf is control invariant,

∃v̄ ∈ U | Ax[0]
N +Bv̄ ∈ Xf . (6.15)

With such a choice of v̄, the sequence [u
[0]
1 , . . . ,u

[0]
N−1,v] is feasible for the MPC optimization

problem at time t = 1. Subce tgus sequence is not necessarily optimal,

J∗0 (x(1)) ≤ cf (Ax
[0]
N +Bv̄) +

N−1∑
k=1

c(x
[0]
k ,u

[0]
k ) + c(x

[0]
N ,v). (6.16)
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Equivalently,

J∗0 (x(1)) ≤ cf (Ax
[0]
N +Bv̄) + J∗0 (x(0))− cf (x[0]

N )− c(x(0),u
[0]
0 ) + c(x

[0]
N , v̄) (6.17)

Since x
[0]
N ∈ Xf by assumption, we can select v̄ such that

J∗0 (x(1)) ≤ J∗0 (x(0))− c(x(0),u
[0]
0 ). (6.18)

Since c(x(0),u
[0]
0 ) > 0 for all x(0) ∈ X0 \ {0},

J∗0 (x(1))− J∗0 (x(0)) < 0. (6.19)

The last step is to prove continuity, for which we omit the details and refer the reader to
[BBM17].

6.3.1 Choosing Xf and Qf

We will look at two cases. First, we will assume that A is asymptotically stable. Then, we
set Xf as the maximally positive invariant set O∞ for the system x(t+1) = Ax(t),x(t) ∈ X .
The set Xf is a control invariant set for the system x(t+ 1) = Ax(t) + Bu(t) as u = 0 is a
feasible control. As for stability, u = 0 is feasible and Ax ∈ Xf if x ∈ Xf , thus assumption
4 of Theorem 6.3.1 becomes

−xTQfx+ xTQx+ xTATQfAx ≤ 0, ∀x ∈ Xf (6.20)

which is true since, due to the fact that A is asymptotically stable,

∃Qf > 0 | −Qf +Q+ ATQfA = 0 (6.21)

Next, we will look at the general case. Let L∞ be the optimal gain for the infinite-
horizon LQR controller. Set Xf as the maximal positive invariant set for system x(t+ 1) =
(A+BL∞)x(t) (with constraints x(t) ∈ X , L∞x(t) ∈ U). Then, set Qf as the solution Q∞
to the discrete-time Riccati equation.

6.3.2 Explicit MPC

In some cases, the MPC law can be pre-computed, which removes the need for online opti-
mization. An important case of this is that of constrained LQR, in which we wish to solve
the optimal control problem

min
u0,...,uN−1

xTNQfxN +
N−1∑
k=0

xTkQxk + uTkRuk

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1

xk ∈ X , k = 0, . . . , N − 1

uk ∈ U , k = 0, . . . , N − 1

xN ∈ Xf ,
x0 = x

(6.22)
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The solution to the constrained LQR problem is a control u∗ which is a continuous piecewise
affine function on polyhedral partition of the state space X , that is u∗ = π(x), where

π(x) = Ljx+ lj if Hjx ≤ Kj, j = 1, . . . , N r. (6.23)

Thus, online, one has to locate in which cell of the polyhedral partition the state x lies, and
then one obtains the optimal control via a look-up table query.

6.4 Bibliographic Notes

We refer the reader to [BBM17] and [RMD17] for two broad and comprehensive treatments
of the topic.
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Part II

Adaptive Control and Reinforcement
Learning
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Chapter 7

Introduction

7.1 Learning in Optimal Control

7.1.1 What Should we Learn?

7.1.2 Episodes and Data Collection

7.2 Bibliographic Notes
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Chapter 8

Regression

In this section we will develop the statistical tools behind regression in the linear and non-
linear setting. In the regression setting we aim to estimate the function that maps a set of
inputs (equivalently, independent variables, covariates or features) to a continuous1 output
(or dependent variables). Regression models are the foundation upon which the rest of the
discussion of learning-based control will be built: we will typically pose the problem of learn-
ing dynamics models, value functions, or policies as regression problems. For example, given
a set of measurements of the system state and the control action, as well as the subsequent
state, we can fit a dynamics model that captures the system dynamics.

Concretely, we will assume we are provided d pairs of the form xi, yi. We will assume
throughout our discussion on linear and Gaussian process regression that y is a scalar, but
the methods we will develop can easily be generalized to vector outputs. Let ŷi denote our
prediction given input xi Then, we aim to find some function f such that, for prediction
ŷi = f(xi), ŷi is close to yi. While one could imagine posing this problem as an optimization
problem or a question of statistical inference, it leaves several questions unanswered. First,
we have not defined what it means for our predictions to be “close” to the measured output.
Beyond this, and more subtly, we haven’t addressed how the function f is represented.

We will begin with the least squares linear regression setting, in which f(x) is linear.
While we expect that this will be a review for most readers, we will use this setting to
highlight several fundamental concepts in frequentist statistics—in which model parameters
are assumed fixed and we do not specify prior beliefs over these parameters—and Bayesian
statistics, which focuses on computing the posterior belief over model parameters given a
prior. We will then discuss Gaussian process regression and neural network models, which
are two highly influential approaches to nonlinear regression in reinforcement learning and
adaptive control. Highlighting both the frequentist and the Bayesian approaches is critical, as
neural network regression models are typically presented from the frequentist point of view,
whereas Gaussian process models are Bayesian models. Moreover, both of these approaches
have strengths and weaknesses that may be relevant to the downstream control task.

1This is in contrast to the classification setting in which we aim to map input variables to a (usually)
finite set of output variables
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8.1 Linear Regression

8.1.1 Minimum Mean Squared Error

In this section we will discuss regression with linear functions,

ŷ = f(x) = θTx. (8.1)

Here, θ are the parameters of the model. Note that the linear function above has an intercept
at zero—there is no offset term. Thus, we will assume throughout our discussion of linear
regression that the input vector is augmented with a 1, so that

ŷ = θ0 + θTx =
[
θ0 θT

] [1
x

]
. (8.2)

Thus when we write x, simply imagine the input augmented with a 1 at the first entry.
Now that we have fixed our function class, we need to fix an objective (or some sort of

concrete metric for our predictions being “close” to the measured data). We will choose the
mean squared error (MSE) cost function,

J(θ) =
1

d

d∑
i=1

(yi − ŷ)2 . (8.3)

The MSE cost (or equivalently, loss) function is the most common loss function in regression
problems due to several favorable properties, both intuitive and computational (which we will
see later in this section). Simply, minimizing this loss encodes the objective of minimizing
the squared error in our prediction. Given our linear model parameterization and this loss
function, we can now fully specify our regression problem as

min
θ

1

d

d∑
i=1

(
yi − θTxi

)2
(8.4)

which we will rewrite as
min
θ

‖y −Xθ‖2
2 (8.5)

where we have multiplied the objective by d to simplify notation, and where yT = [y1, . . . , yd]
and XT = [x1, . . . ,xd]

2.
First, note that this loss is convex in the model parameters and is differentiable with

continuous derivative (in class C1). From this, we know any point satisfying the first order
necessary conditions for optimality is a global minimizer. Thus, to solve this problem, we
will compute the gradient

∇θ ‖y −Xθ‖2
2 = 2XTXθ − 2XTy (8.6)

2This matrix is typically referred to as the design matrix.
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which, setting this gradient to zero, we have

XTXθ = XTy. (8.7)

If XTX is invertible then the optimal set of parameters is

θ̂ = (XTX)−1XTy. (8.8)

We will write the set of parameters that solve the least squares problem in the overdetermined
form (as above) as θ̂LS. When is XTX invertible? Note that

XTX =
d∑
i=1

xix
T
i . (8.9)

Let n denote the dimension of the input. Then, we require d > n for XTX to be full rank.
However, at least n input is not a sufficient condition for XTX to be full rank; we require
at least n linearly independent inputs.

An intuitive understanding of the requirements for the exact computation of θ̂LS is pro-
vided by considering the problem geometrically. The invertibility of XTX implies the unique
existence of a set of parameters θ that minimizes (8.5). In the case that we have fewer lin-
early independent data points than n, (8.7) is not unique. Thus, there exist multiple values
of θ that result in zero error, and the system is underdetermined. A common approach to
this is to optimize a regularized objective

min
θ

‖y −Xθ‖2
2 + λ‖θ‖2

2 (8.10)

where λ is a positive scalar. By adding in the regularization term ‖θ‖2
2 (typically referred to

as Ridge or Tikhanov regression, or L2 regression due to the use of the 2-norm), we bias the
optimal value of θ toward having a small norm. Following the approach of (8.11), we have

θ̂ = (XTX + λI)−1XTy (8.11)

for which the XTX + λI is always full rank and thus invertible. We will write the solution
to the ridge regularized problem as θ̂RR. For positive λ, ‖y − Xθ‖2

2 may not be zero, and
the estimator of the parameters is biased. As λ gets smaller, this bias will decrease. In the
limit of λ→ 0, we have

(XTX + λI)−1XT → XT (XXT )−1 (8.12)

yielding the least norm solution to (8.7), which we write

θ̂LN = XT (XXT )−1y. (8.13)

The least norm solution is the set of parameters that achieves zero loss on (8.5) while si-
multaneously minimizing the 2-norm of the parameter vector. So, is the least norm solution
strictly preferred to a set of parameters computed via the ridge regression approach with a
positive value of λ? Surprisingly, the answer is no. The added bias from the regularization
helps generalize to new data points without overfitting to the training dataset. Regulariza-
tion is an important concept in machine learning, and we will discuss it further throughout
this section, including showing the ridge regression problem arises naturally in Bayesian
inference.
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8.1.2 Maximum Likelihood Estimation

Our previous discussion of least squares linear regression has avoided formalizing several
implicit, necessary assumptions. In this section, we will investigate the method of maximum
likelihood estimation, which we will use to derive the least squares estimator from the previous
section. Let D = {(xi, yi)}di=1 denote the training dataset. The likelihood function is the
conditional probability of the data given the parameter,

L(θ) = p(D | θ). (8.14)

The goal of maximum likelihood estimation is to choose the parameter that maximizes the
probability of the training data

θ∗ = argmaxθL(θ). (8.15)

In practice, we will typically consider the log likelihood, `(θ) = logL(θ). Note that the
maximizer of the log likelihood is equivalent to the maximizer of the likelihood due to the
monotonicity of the log function. The log likelihood is more practical for several reasons.
First, we will make the standard assumption that our training data are independent (one
(x, y) pair we observe have no impact on any other pair) and identically distributed (i.i.d.).
Then, the joint distribution is

p(D | θ) =
d∏
i=1

p(yi | xi,θ) (8.16)

where we have discarded the distribution p(xi | θ) = p(x) as we assume it contains no
information about θ. For the log likelihood, this joint takes the form

log p(D | θ) =
d∑
i=1

log p(yi | xi,θ) (8.17)

resulting in the more convinient summation as opposed to the product. There are several
other important properties that we will not detail here regarding the log likelihood; for
example, due to the log-concavity of the exponential family, optimization of the log likelihood
leads to a convex optimization problem for many common distributions. In practice, we will
write maximum likelihood problems as minimization of the negative log likelihood to unify
the notation.

Linear regression via MLE

We will assume the underlying generative model of our data takes the form

y = xTθ∗ + ε (8.18)

where θ∗ is the true underlying set of parameters and ε ∼ N (0, σ2) is a Gaussian, zero-mean
noise term. Given this model, the likelihood

p(y | x,θ) = N (xTθ, σ2) =
1

σ
√

2π
e−

(y−xT θ)2

2σ2 (8.19)
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resulting in log likelihood of the dataset

`(θ) =
d∑
i=1

log p(yi | xi,θ) =
d∑
i=1

(
− log(

√
2π)− (yi − xTi θ)2

2σ2

)
(8.20)

which, discarding the constant term log(
√

2π) and the multiplicative term 2σ2 as they do
not effect the optimization problem, yields exactly the mean squared error criterion we
considered in the previous section. The least squares model we have developed in this
section (in particular, under the i.i.d.assumption in combination with the assumption that
we receive noise-free measurements of the input variable x) is referred to as the ordinary
least squares (OLS) method.

While in the process of this derivation we have assumed Gaussian additive noise, such
as assumption is not necessary. We will refer to θ̂LS as an estimator, which maps training
data to a parameter estimate. The quality of this estimator can be evaluated under a loss
function (note that this is a loss on the parameter estimate as opposed to a loss function on
the prediction of the model). We will fix a MSE loss function on the parameter estimate of
the form

ED
[
‖θ∗ − θ̂‖2

2

]
. (8.21)

An estimator is said to be unbiased if

ED[θ̂] = θ∗. (8.22)

Finally, note that an estimator is linear if it is a linear combination of the output mea-
surements. Then, we have the following result for the OLS estimator. If ε is sampled i.i.d.
with zero mean, then the OLS estimator is the best (in terms of MSE loss) linear unbiased
estimator (BLUE). This is referred to as the Gauss-Markov theorem. This result provides a
basis for using the OLS estimator for a wide variety of settings, as it is flexible, interpretable,
and performs well in a variety of settings.

Basis Function Regression

We have so far restricted the class of models under consideration to functions linear in the
input, x. For many problems, this is an unrealistic model, and so it is desirable to consider
a more expressive class of models. Because we have noise-free measurements of the input
x, we can instead consider nonlinear functions of these inputs. We will refer to these as
features, and write them as φ(x), where φ is some nonlinear function. Note here that we
fix φ is advance, and then optimize the weightings of these features. This approach will be
generalized when we consider neural network models, for which we can directly optimize the
features as a function of the training data.

Which features should we use? In general, it depends on your problem setting. For
example, if we consider oscillatory pendulum dynamics, we should include sinusoidal features.
Other common choices include polynomials of the inputs, indicators for certain regions, or
more complex functions like radial basis functions. While increasing the number of features
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results in a more expressive model, it also increases the risk of overfitting, and so the features
should be chosen carefully, for example via cross validation. We will not discuss feature
selection in detail in this work, and we refer the reader to [FHT08].

8.1.3 Bayesian Inference and Bayesian Linear Regression

We have so far considered a frequentist parameter estimation setting in which we aim to
choose a point estimate of some parameter to minimize a loss function. We will now look at
Bayesian inference. In this setting, we will assume access to a prior distribution (or belief)
over the parameter, which we will write p(θ). This prior captures any information we have
about the parameter before observing any other data. This could be influenced by knowledge
available to a system designer (for example, rough estimates of dynamics parameters) or from
data from other, related problems. Given this prior distribution combined with a likelihood
function, we will use Bayes’ rule to compute the posterior distribution over the parameters,
via

p(θ | D) =
p(D | θ)p(θ)

p(D)
. (8.23)

This approach has several strengths and weaknesses. Whereas frequentist estimation
gives us a point estimate of a parameter (possibly with confidence intervals), Bayesian infer-
ence returns a full distribution over the parameter. This full representation of the uncertainty
over a parameter can be incorporated downstream into decision-making algorithms, poten-
tially resulting in increased robustness. However, the major limitation of Bayesian inference
is that it is analytically intractable in most cases: for arbitrary models for the prior and the
likelihood, the posterior density likely does not have a convenient, closed-form representa-
tion. This is a result of the need to compute the marginal likelihood, p(D). This can be
computed via ∫

p(D | θ)p(θ)dθ (8.24)

which is typically an intractable integral. In general, practitioners must therefore turn to
sampling-based or discrete approximations. However, one special case for which the posterior
can be computed exactly is the case for which the prior and the likelihood are Gaussian.
This fact underlies, for example, the Kalman filter, and will be critical to our development
of Bayesian least squares.

Bayesian Least Squares

We will now show how the Bayesian inference can be applied to the least squares problem.
Concretely, we will consider the conditional density estimation problem

p(θ | y, X) =
p(y | θ, X)p(θ)

p(y | X)
. (8.25)
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As previously, nonlinear transformations of the input variables may be used, but for simplic-
ity of notation we will use un-transformed inputs. Let

p(θ) = N (µ0,Σ0) =
1√

(2π)n|Σ0|
exp(−1

2
(θ − µ0)TΣ−1

0 (θ − µ0)) (8.26)

denote the prior over θ, where µ0 and Σ0 are the mean and covariance respectively. As in
the previous section, we will assume ε ∼ N (0, σ2), and that this noise term is sampled i.i.d..
We will assume that the noise covariance, σ2, is known, but in general this assumption is
fairly easily relaxed.

To compute the posterior over θ, note that

p(θ | D) ∝ exp(−1

2
(θ − µ0)TΣ−1

0 (θ − µ0)) exp(− 1

2σ2
(y −Xθ)T (y −Xθ)) (8.27)

where we have ignored the normalizing constants. Looking at the exponentiated terms, we
have

− 1

2
(θ − µ0)TΣ−1

0 (θ − µ0) +− 1

2σ2
(y −Xθ)T (y −Xθ)) (8.28)

∝− 1

2
(θ − µd)TΣ−1

d (θ − µd) (8.29)

where

Σd = (
1

σ2
XTX + Σ−1

0 )−1 (8.30)

µd = Σd(
1

σ2
XTy + Σ−1

0 µ0). (8.31)

The above can be shown by completing the square for (8.28). We can now notice that this is
an unnormalized Gaussian density for θ with mean and variance given by (8.31) and (8.30),
or

p(θ | D) = N (µd,Σd). (8.32)

This result is quite remarkable: we have incorporated our measurements to give a full poste-
rior distribution over our model parameters, as opposed to a simple point estimate. However,
for applications in decision-making and control, we care about the predictive distribution,
or p(y∗ | x,D) where we write x∗, y∗ to denote test points, or an arbitrary prediction prob-
lem given the training dataset. To derive the posterior predictive, we will turn to following
identity.

Lemma 8.1.1. Let x ∼ N (µx,Σx) and y ∼ N (µy,Σy), with x and y independent. Then
Ax+By ∼ N (Aµx +Bµy, AΣxA

T +BΣyB
T )

Proof. See [PP], section 8.
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Given this result, note that
y∗ = θTx∗ + ε (8.33)

where θ ∼ p(θ | D) with θT and ε independent. Thus, applying the above lemma, we have

p(y | x,D) = N (µTdx
∗,x∗,TΣ−1

d x
∗ + σ2). (8.34)

Therefore, given the Gaussian model assumption, we can exactly compute the posterior
predictive distribution.

Maximum a Posteriori (MAP) Estimation

A common approach to incorporate prior information into parameter estimation without per-
forming fully Bayesian inference is to compute the maximum a Posteriori (MAP) parameter
estimate, defined as

θ̂MAP = argmaxθp(θ | D) = argmaxθp(D | θ)p(θ) (8.35)

where we drop the marginal likelihood from the denominator because it does not effect the
maximization (and because we do not need to compute a probability density and thus we do
not have the requirement that the output integrates to one). Examining (8.35), we can see
that it corresponds to the maximum likelihood estimate, with an added term representing
the prior belief. As such, it allows a practitioner to include prior information without the
computational challenges associated with general Bayesian inference. Indeed, as the prior
becomes flatter—as all values of the parameter become equally likely under the prior—the
MAP estimator approaches the max likelihood estimator.

Examining the MAP estimator for the Bayesian least squares problem, we have

θ̂MAP = µd (8.36)

as the max of a Gaussian is the mean. Let us choose a prior with mean µ0 = 0 and variance
Σ0 = I and fix the noise variance as σ2 = λ. Then, the MAP estimator is

θ̂MAP = (XTX + λI)−1XTy (8.37)

which is exactly the ridge regression (or L2 regularized) least squares estimator. This gives
us some insight into why a positive choice of λ typically outperforms the least norm solution:
the ridge regression approach imposes an implicit prior on the value of θ.

8.2 Gaussian Processes

We have discussed an approach to nonlinear regression using fixed basis functions. In this
section, we will discuss Gaussian process regression, as well as the (strong) connections to
Bayesian linear regression. Gaussian process regression, instead of performing inference over
a finite collection of weights as in the previous section, performs inference directly over
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functions. We previously addressed the regression problem via a parametric approach in
which we fixed our model to be a linear function of some (possibly nonlinearly transformed)
features. In contrast, Gaussian process regression instead performs nonparametric inference,
in which the class of models is not specified via a finite set of parameters. We will begin by
defining a Gaussian process

Definition 8.2.1 ([Ras03]). A Gaussian process is a time-continuous stochastic process such
that for every finite collection of time indices t1, . . . , tk, the collection if random variables
yt1 , . . . , ytk is jointly Gaussian.

A Gaussian process f(x) is fully specified by its mean

µ(x) = E[f(x)] (8.38)

and covariance
k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]. (8.39)

Thus, the behavior of the GP regression model is governed entirely by these quantities. The
mean is typically assumed to be zero, although this is not necessary. We refer to k(·, ·) as
the kernel function. We require the kernel function to be symmetric:

k(x,x′) = k(x′,x), (8.40)

as well as positive definite, or

K =

k(x1,x1) . . . k(x1,xk)
...

...
k(xk,x1) . . . k(xk,xk)

 � 0 (8.41)

for any x1, . . . ,xk. These conditions are intuitive: they guarantee that the variance matrix
associated with the GP for an arbitrary set of inputs is well-defined. A kernel satisfying
these properties is a Mercer or positive definite kernel.

As an example of a simple Gaussian process model, let us consider Bayesian linear re-
gression on features φ(x). Fixing a prior θ ∼ N (0,Σ0), we have

µ(x) = E[θTφ(x)] = 0 (8.42)

k(x,x′) = φ(x)TE[θθT ]φ(x) = φ(x)TΣ0φ(x) (8.43)

As we will see later, using the machinery of kernel GP regression to perform Bayesian linear
regression with a pre-specified set of features is inefficient. However, let us consider the
squared exponential kernel

k(x,x′) = exp(− 1

2`
‖x− x′‖2

2) (8.44)

where ` is a length scale hyperparameter. In this case, the set of basis functions resulting
in this kernel is actually infinite dimensional. Indeed, every Mercer kernel corresponds to
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a (potentially) infinite dimensional set of features, and the choice of kernel allows intuitive
control of how the regression model behaves, and implies a distribution over functions.

To see how we can use a GP regression model to make predictions, we will rely on the
following result.

Lemma 8.2.2 ([Ras03]). Let y1,y2 be jointly Gaussian such that[
y1

y2

]
∼ N (

[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

]
). (8.45)

Then,
p(y1 | y2) = N (µ1 + Σ21Σ−1

22 (y2 − µ2),Σ11 − Σ21Σ−1
22 Σ12) (8.46)

We will assume a model of the form y = f(x) + ε, and we will write a test point as x∗.
Then, given training data D = {(xi, yi)}di=1, we note that[

f(x∗)
y

]
∼ N (

[
0
0

]
,

[
k(x∗,x∗) K(X,x∗)
K(x∗, X) K(X,X) + σ2I

]
). (8.47)

where

K(x∗, X) =

k(x∗,x1)
...

k(x∗,xd)

 (8.48)

and

K(X,X) =

k(x1,x1) . . . k(x1,xd)
...

...
k(xd,x1) . . . k(xd,xd)

 . (8.49)

Thus, applying Lemma 8.2.2, we can see that p(f(x∗) | D) is Gaussian with mean

E[f(x∗)] = K(x∗, X)(K(X,X) + σ2I)−1y (8.50)

and variance

var(f(x∗)) = k(x∗,x∗)−K(x∗, X)(K(X,X) + σ2I)−1K(X,x∗). (8.51)

From this, using the fact that the sum of independent Gaussians is Gaussian, the predictive
variance is

var(y∗) = var(f(x∗)) + σ2. (8.52)

and the predictive mean is E[y∗] = E[f(x∗)]. Given these update rules, we have the following
procedure for performing regression with Gaussian process models. First, we select a kernel
function (there are many to choose from; see [Ras03] or [Mur12] for a discussion of possible
choices). Then, we compute the kernel matrices k(x∗,x∗), K(x∗, X), and K(X,X). Finally,
we use the conditioning equations above to compute our posterior predictive distribution.

The choice of kernel can result in much more expressive models than are easily designed
with standard Bayesian linear regression. Moreover, whereas the expressivity of a standard
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Bayesian linear regression model is limited by the finite set of parameters, the function rep-
resentation of the GP can be infinitely improved—indeed, kernel GP regression can asymp-
totically approximate any continuous function. So, are GP regression models always better
than standard Bayesian linear regression? For small datasets, they perform quite well and
are a strong choice. However, for larger datasets, the computational performance suffers.
Note that the posterior inference procedure requires inverting the matrix K(X,X) (plus an
identity term), which is d × d. Matrix inversion has (practically) complexity O(d3), and so
this inversion step can be prohibitively slow for large training datasets.

8.3 Neural Networks

Our discussion has so far focused on models that are linear in a pre-specified set of features.
In the case of standard or Bayesian linear regression, these features were chosen explicitly.
In the case of Gaussian process regression, the system designer chose a kernel function which
induced a set of features. The previously presented models are useful for a reason: they are
simply, effective, and training the model (or computing the posterior) corresponds to either
a closed-form solution or to a convex optimization problem. However, these methods come
with the limitation that we must explicitly choose our features, and this is a difficult task in
itself.

In this section, we will discuss neural network models. These models are composed of
the composition of simple nonlinear transformations of the inputs. As such, neural network
models can be viewed as nonlinear function parameterizations. Indeed, neural networks are
an expressive and general function parameterization. However, the optimization problem
associated with choosing the parameters of these nonlinear models results in a highly non-
convex optimization problem. As a consequence, neural network models largely fell out of
favor compared to convex models. In the early 2010s, extremely strong empirical performance
on image recognition benchmarks brought these models back to the forefront of both research
and commercial application [KSH12]. Currently, they are the predominant regression model
for nonlinear system identification and reinforcement learning. While neural networks are
an extremely broad topic, and one that is growing rapidly, we will focus in this section on a
simple, minimal discussion of neural network models. For a deeper discussion, we refer the
reader to [GBC16].

8.3.1 The Perceptron

Before introducing a full neural network model, we will begin with introducing the minimal
unit of the network, the perceptron. Note that while we use the term perceptron to a general
hidden unit, it is often frequently used to discuss the perceptron learning algorithm which
we will not discuss. The perceptron is defined as

h(x) = σ(wTx) (8.53)
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where σ(·) is a nonlinear function, typically referred to as a threshold function, and w is a
vector of weights. Classically, the threshold function is one that (approximately) maps to 1
if wTx > 0, and 0 otherwise. This hard thresholding is typically relaxed to a soft threshold
to result in a smooth gradient. A widespread threshold function is the logistic function

σ(x) =
1

1 + e−x
. (8.54)

This nonlinearity leads to a simple binary classifier, where the weights w result in a linear
decision boundary. While nonlinearities corresponding to binary classifiers were originally
dominant, the ReLU (rectified linear unit) nonlinearity

σ(x) =

{
x for x > 0

0 otherwise
(8.55)

has gained substantial popularity recently due to good empirical performance.

8.3.2 Feed-Forward Neural Networks

By combining perceptrons (or hidden units), we arrive at the feed-forward neural network.
The term feed-forward refers to the fact that the hidden units will be stacked in a graph
without loops or temporal dependency, as is typical in recurrent networks, and will not
include features other than the previously described simple nonlinear hidden units, as in for
example convolutional networks. We will refer to a hidden layer as a nonlinear function of
the form

h = σ(Wx) (8.56)

where σ is applied element-wise. The simplest feed-forward neural network is one with a
single hidden layer

h = σ(W1x) (8.57)

y = W2h (8.58)

where W1,W2 are weight matrices. This provides a nonlinear function parameterization.
This can be combined with any loss function—for regression, the most common choice is the
mean squared error loss function that we have discussed previously. This neural network
is non-convex, and thus simple gradient descent algorithms can not provide guarantees on
finding the global minima. However, in practice and combined with several effective training
techniques including regularization schemes, these models perform well despite the non-
convexity of the associated optimization problem. While we’ve considered only single hidden
layer networks so far, we can also consider deep neural network models with multiple hidden
layers; for example of the form

h1 = σ(W1x) (8.59)

h2 = σ(W2h1) (8.60)

y = W3h2. (8.61)

This increased depth allows representation of increasingly complex features.
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System Identification
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Chapter 10

Adaptive Control and Adaptive
Optimal Control

10.1 Adaptive Control

We will now discuss adaptive control, which (broadly speaking) aims to perform online
adaptation of the control policy to improve performance. The formulation of the adaptive
control problem is typically not in terms of optimal adaptive control. Typically, the designer
of an adaptive control system will place more emphasis on proving the combined stability
of the controller and the adaptive process than on minimizing a cost function. While in the
system identification setting we were concerned with model identification in particular, work
on adaptive control investigates both model adaptation as well as controller adaptation, and
combinations. Indeed, adaptive control encompasses a wide variety of techniques. In [ÅW13],
the authors define an adaptive controller as “a controller with adjustable parameters and a
mechanism for adjusting the parameters”. Examples of adaptive control strategies include

• Adaptive pole placement or policy adaptation

• Iterative learning control (ILC)

• Gain scheduling

• Model reference adaptive control (MRAC)

• Model identification adaptive control (MIAC)

• Dual control strategies

though we will focus primarily on the last three.
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10.1.1 Model Reference Adaptive Control (MRAC)

We will now introduce model reference adaptive control, which may be interpreted as a com-
bined model-based and model-free adaptive control scheme. While it leverages a model, this
model is responsible only for generating a reference output to track, and control adaptation
is done directly via updating the policy. Despite stating our desired adaptive control problem
in discrete time, we will describe the MRAC approach in continuous time, which is the more
standard setting. A model reference adaptive controller is composed of four parts:

1. A plant containing unknown parameters

2. A reference model for compactly specifying the desired output

3. A feedback control law for containing adjustable parameters

4. An adaptation mechanism for updating the adjustable parameters

The reference model is used to provide the ideal plant response which the adaptation mech-
anism should aim to achieve. Choice of reference model is therefore an art, similar to choice
of a cost function. However, practically, it is more difficult than choice of a cost function. A
cost function designer for an optimal control or reinforcement learning system aims to reflect
their desired performance characteristics is a cost function that yields a tractable optimiza-
tion problem. The designer of an MRAC system, on the other hand, must choose a model
that achieves good performance. As such, an MRAC system designer is implicitly solving a
policy optimization problem to choose a reference model. Practically, choice of these models
is simplified by considering linear systems, and thus one may specify performance in terms
of relatively simple characteristics such as damping.

One of the simplest approaches to MRAC is the so-called MIT rule. Let ŷ(t) denote the
reference signal we aim to track, and y(t) denote the output of the system as a result of
controller π, parameterized by θ. We will write specify the error e(t) = ‖ŷ(t) − y(t)‖2, as
well as J(t) = 1

2
e(t)2. Then, the MIT rule consists of taking gradient updates of the form

θ̇ = −γ ∂J
∂θ

= −γe(t) ∂e
∂θ

(t) (10.1)

where γ is a gain parameter governing update rate. This rule may be applied in discrete or
continuous time (via an update difference equation or differential equation), and the joint
dynamics of the system and the control parameter θ may be analyzed for stability, typically
with tools from Lyapunov stability theory. For a more complete discussion on MRAC and
design of MRAC systems using Lyapunov theory, we refer the reader to [ÅW13].

10.1.2 Model Identification Adaptive Control (MIAC)

Model identification adaptive control is the adaptive control scheme that logically follows
from system identification: we will concurrently perform parameter estimation while con-
trolling the system by using our estimate of the parameters. We will refer to our estimate
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of the model parameters as θ̂. MIAC designs a control scheme that takes θ̂ as an input in
addition to the state x.

An important distinction within MIAC schemes is between certainty-equivalent con-
trollers and so-called cautious controllers. Certainty-equivalent approaches, like certainty-
equivalence in the LQG setting, have the policy as a function only of a point estimate of
the estimated parameters. In the LQG setting, in which the state is estimated by Kalman
filter, it can be shown that certainty-equivalent control performs equivalently to a control
scheme incorporating other statistics of the state estimate. However, this principle does not
in general hold, and thus certainty-equivalence in adaptive control is often a design choice to
make stability analysis tractable. Cautious controllers, on the other hand, incorporate other
information about the estimate of the parameters. For example, in the Bayesian setting,
the posterior density of the parameters may be passed to the controller. This approach is
known as “cautious” as it explicitly factors the uncertainty of the parameter estimate into
the control decision, and thus will be more robust when uncertainty is high. However, be-
cause we are operating within the passively adaptive control setting, cautious methods will
not include the expected uncertainty reduction due to future information, and thus may be
overly conservative.

10.1.3 Linear Quadratic Adaptive Control

One of the earliest works on adaptive control in the linear dynamics, quadratic cost set-
ting was Simon [Sim56], who proposed using certainty-equivalence in the model estimation.
His approach, however—to utilize the mean parameter estimates combined with an LQR
controller—can converge to incorrect values with non-zero probability [BKW85, AYS11].
Thus, it is necessary to augment the control strategy with heuristic approaches to actively
explore the environment. A simple example exploration strategy is so-called ε-greedy ex-
ploration, in which a random action is taken with probability ε, and the system otherwise
follows the certainty-equivalent optimal controller. While this performs reasonably well in
the linear setting (where the definition of “reasonably well” may perhaps be debated), it
perfoms poorly in nonlinear MDPs and discrete MDPs due to the highly “local” nature of
the exploration [MLJA15, OVRW16]. We expand on the problem of exploration in the next
section.

10.2 Probing, Planning for Information Gain, and Dual

Control

Thus, we can augment our state with some statistics of our estimate (which we will write
θ̂) to yield hyperstate y, and augment our dynamics with the dynamics of the estimation
process. To solve the Bellman dynamic programming problem for this hyperstate is dual
control.

The difference between these two approaches may seem subtle, but that former approach
will result in a control scheme that optimally identifies the parameters for the purposes of
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control, whereas the latter approach will only passively adaptive the parameter estimate,
and act with respect to that passive estimate.

10.3 Bibliographic Notes
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Chapter 11

Model-free Reinforcement Learning

In this section we will discuss model-free reinforcement learning, in which an agent aims
to improve its behavior via interaction with an environment, without explicitly trying to
predict state transitions (i.e. dynamics) or rewards. By learning a policy directly (possibly
along with a value function), the agent can learn to choose good actions without explicitly
leveraging model-based control.

There are several reasons why this model-free approach may be preferable to learning
the dynamics of the system. First, the optimal policy may be considerably simpler than the
dynamics of the system. An example of this is inventory management, a classic problem in
operations research. In this setting, the optimal policy is simply to restock whenever the
inventory level is below some threshold, a trivial decision rule.

A second reason is that learning a dynamics model may result in suboptimality of the
resulting policy. In dynamics learning, we typically choose a surrogate objective function
to optimize the model, such as L2 error. In model-free reinforcement learning, on the other
hand, we directly optimize a policy to minimize the expected total cost. Introducing the
intermediate objective may induce suboptimality in the policy optimization process.

We will discuss the two major classes of model-free reinforcement learning algorithms:
those based on temporal difference learning, such as Q-learning, and those based on policy
gradient optimization. We will then discuss the intersection of these methods, typically
referred to as actor-critic methods because they combine an actor (policy, which selects
actions) and a critic (value function, which predicts the total cost associated with actions).

Our discussion in this section will not be comprehensive, and indeed, the modern rein-
forcement learning literature is growing rapidly. This section is meant to provide an overview
of the most common approaches in current use.

11.1 Temporal Difference Learning

A key concept in reinforcement learning is the idea of temporal difference (TD) learning. TD
learning combines ideas from statistical inference—in particular, parameter inference with
noisy measurements—with dynamic programming.
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Temporal difference learning focuses on learning some flavor of the value function, such
as the standard state value function (also referred to as the cost-to-go in these notes), or
the state-action value function (also referred to as the Q function). Note, however, that this
quantity is not directly observable—the value function can not be measured directly. Thus
TD learning turns to the concept of bootstrapping, in which the learned value of future states
is used to provide a noisy measurement of the current value. In addition to enabling efficient
learning of the value function, TD methods also enable online control, in which a policy
can be immediately updated after observing one transition, as opposed to observing a full
episode.

We will discuss two algorithms: SARSA, which is on-policy, and Q-learning, which is
off-policy. We will discuss both of these algorithms in the tabular setting. In this setting,
we assume our representation of the Q function will take the form of a look up table of each
state and action pair. Thus, we necessarily assume a discrete state and action space. We
will then discuss combining TD learning with function approximation. This discussion will
focus on Q-learning, as the on-policy nature of SARSA has so far been difficult to combine
with hyperparametric function approximators such as neural networks. As in our discussion
of optimal control in discrete state spaces, we will avoid discussion of the policy evaluation
setting, and focus solely on policy improvement (or the control setting). For a thorough
discussion of policy evaluation, we refer the reader to [SB18].

11.1.1 SARSA

As a first model-free TD learning algorithm, we will consider SARSA. SARSA stands for
state, action, reward, state, action, where the last state action pair denote the post-transition
state and the action associated with this state. The emphasis on this second action provides
a contrast to Q-learning, as we will see later.

SARSA proceeds as in Algorithm 5. The agent iteratively interacts with the environment,
choosing an action to minimize the learned Q function. This Q function is updated as

Q(xt,ut)← Q(xt,ut) + α(ct + γQ(xt+1,ut+1)−Q(xt,ut)) (11.1)

for alpha ∈ (0, 1]. Note that for our discussion of model-free RL, we will use a temporally
stationary value function. There are two phases to the SARSA algorithm. One consists of
selecting actions to optimize Q. For the optimal state-action value function Q∗, this yields
the optimal policy.

The second step consists of updating the learned Q function to reduce the temporal
difference error,

ct + γQ(xt+1,ut+1)−Q(xt,ut). (11.2)

Note that acting according to the policy for which the Q function is defined, this TD error
will be zero in expectation. Thus, at convergence, the policy is optimal for Q∗, and the Q
function has zero expected error (and is thus at a fixed point) for the associated policy; these
two facts together give intuition as to why this approach converges to an optimal policy in
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Algorithm 5 SARSA

Require: Step size α ∈ (0, 1], action selection rule π(·; ·)
1: Initialize Q(x,u) for all x ∈ X ,u ∈ U
2: for each episode, n = 0, . . . , N do
3: Initialize state x0

4: ut ← π(xt;Q)
5: for t = 0, . . . , T do
6: Observe next state xt+1, cost ct
7: ut+1 ← π(xt+1;Q)
8: Q(xt,ut)← Q(xt,ut) + α(ct + γQ(xt+1,ut+1)−Q(xt,ut))
9: end for

10: end for

the tabular setting. A proof of convergence relies on technical details regarding exploration,
which we exclude discussion of for now.

SARSA is an on-policy reinforcement learning algorithm, which means that it must in-
terleave action selection (and thus interacting with the environment) and learning. This is
due to the interaction between the greedy (with respect to the Q function) action selection
and using the post-transition action (ut+1) for computing the update to the Q function.
Updating the Q function solely with respect to actions from a provided dataset, without
controlling the action selection, would learn the policy used in the dataset generation and
the associated Q function (a setting referred to as policy evaluation). This is in contrast to
Q-learning (which we will discuss next) which is off-policy, and thus able to learn an optimal
policy without action selection.

ε-greedy Exploration

Reinforcement learning algorithms must focus on exploration, as well as exploitation. In par-
ticular, if greedy action selection is performed, it is possible that some state-action pairs will
not be explored, and so the reward from these states is not observed, and thus convergence is
not achieved. As opposed to our discussion in the previous section on dual control, we may
not assume knowledge of the reward function, or priors on parameters. As a consequence, we
must turn to heuristics for efficient exploration. While we will expand on exploration later
in this chapter, we will discuss a simple form of exploration typically paired with tabular
learning algorithms, ε-greedy action selection.

An ε-greedy policy assumes some pre-specified ε ∈ (0, 1), and takes the form

πε(x;Q) =

{
uε with probability ε

argminu∈U Q(x,u) otherwise
(11.3)

where uε denotes an action sampled uniformly from the action space. Put simply, this policy
chooses the optimal action with probability 1− ε, and otherwise chooses a random action.
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Algorithm 6 Q-learning

Require: Step size α ∈ (0, 1], action selection rule π(·; ·)
1: Initialize Q(x,u) for all x ∈ X ,u ∈ U
2: for each episode, n = 0, . . . , N do
3: Initialize state x0

4: for t = 0, . . . , T do
5: ut ← π(xt;Q)
6: Observe next state xt+1, cost ct
7: Q(xt,ut)← Q(xt,ut) + α(ct + γminu′∈U Q(xt+1,u

′)−Q(xt,ut))
8: end for
9: end for

11.1.2 Q-Learning

Q-learning, named for the state-action value function and detailed in Algorithm 6, relies on
replacing the on-policy update of SARSA with

Q(xt,ut)← Q(xt,ut) + α(ct + γ min
u′∈U

Q(xt+1,u
′)−Q(xt,ut)). (11.4)

SARSA aimed to perform a greedy action selection step, coupled with a Q function up-
date step that estimated the Q function associated with this greedy action selection (policy
evaluation). Recall that

Q∗(x,u) = c(x,u) + Ex′ [J∗(x′)] (11.5)

and
J∗(x) = min

u∈U
Q∗(x,u). (11.6)

In contrast to SARSA, Q-learning replaces the policy evaluation step with one in which the
Q∗ is inferred, based on the minimization in the TD error. Interestingly, this results in an
off-policy algorithm—for any choice of data-gathering policy, the optimal Q function can be
learned (in the tabular case, with sufficient exploration).

11.1.3 Q-Learning with Function Approximation

Up until now, we have considered tabular representations of either policies or Q functions
(inducing a tabular policy via maximization over discrete action spaces). For large MDPs,
this tabular representation is impractical. For large, discrete MDPs, visiting every state-
action pair may be impossible, and we may wish to achieve some notion of generalization, in
which close states (in some metric) have similar value functions or policies. Moreover, as we
move to continuous state spaces, we have two options to represent our Q function. We may
either discretize the continuous state space to get a discrete MDP, leaving us susceptible
to the curse of dimensionality1. Alternatively, we may turn to a parametric representation

1The curse of dimensionality is used to describe the exponential growth of the discrete MDP state space
as the continuous state space dimension increases.
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of our Q function, and optimize these parameters to reduce TD error. As we will see in
this section, while these approximation approaches are effective for achieving scalability
of Q-learning methods, they have poor convergence properties and can be quite unstable
in practice. We will focus in this section on combining off-policy methods with function
approximation, which have recently been more popular. For a discussion of combining on-
policy methods with function approximation, as well as value function approximation, we
refer the reader to [SB18].

Q-learning with Linear Function Approximation

Before discussing nonlinear approximations such as neural networks, we will discuss combin-
ing Q-learning with linear function approximation. In particular, we will consider functions
of the form

Qθ(x,u) = θTφ(x,u) (11.7)

where φ(·, ·) is a set of features (or basis functions). Thus, we will replace the tabular update
of Q-learning with an update rule for the weights, θ. We fix as a loss function the squared
TD error, defined for a state, action, cost, state tuple (x, .u, c,x′) as

`(θ) = Ex,u,x′∼ρ

[(
c+ γ min

u′∈U
Qθ(x

′,u′)−Qθ(x,u)

)2
]

(11.8)

which has several convenient properties. Here, ρ is the distribution over states and actions
induced by the dynamics of the environment and the policy. Thus, online transitions acting
with respect to the current policy (induced by the Q function) will obey this distribution.
In general, off-policy learning will not exactly obey this distribution. We will discuss this in
the next subsection. For further discussion, we refer the reader to [SB18]. The gradient of
the squared TD error takes the form

∇θ`(θ) = −Ex,u,x′∼ρ
[
(c+ γ min

u′∈U
Qθ(x

′,u′)−Qθ(x,u))∇θQθ(x,u)

]
(11.9)

= −Ex,u,x′∼ρ
[
(c+ γ min

u′∈U
Qθ(x

′,u′)−Qθ(x,u))φ(x,u)

]
(11.10)

where the gradient contribution of the post-transition value is ignored. We will discuss this is
more detail when we discuss double Q-learning. Note that a Monte Carlo approximation of
the expectation over state-action occupancy, ρ, is provided by online updating as in standard
Q-learning. This gradient update for a single transition tuple allows us to define approximate
version of Q-learning and SARSA (if the u′ taken is used instead of maximizing over the
action function). Two approaches are possible: one can update the weights in an online
fashion (which we will not discuss here due to this approach being relatively unpopular) or
in a batch fashion, averaging the gradient over many transitions, which we will discuss in
the next subsection.
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A standard gradient descent update (ignoring the expectation) with step size α for θ
takes the form

θ′ ← θ + α(c+ γ min
u′∈U

Qθ(x
′,u′)−Qθ(x,u))φ(x,u). (11.11)

As a special case, consider a discrete state/action space and features corresponding to an
indicator function on state-action pairs. This is to say, we consider a |X | × |U| dimensional
vector where for a given state-action pair, one entry in φ takes value one and all others
are zero. Let φi, θi denote the nonzero feature entry and the corresponding entry in the
parameter vector for state and action x,u. Then, the parameter update rule takes the form

θ′i ← θi + α(c+ γ min
u′∈U

Qθ(x
′,u′)− θi). (11.12)

as φi = 1, and φj = 0 for j 6= i. Thus, interpreting the parameters θ as the Q function
values for each state-action pair, we have exactly recovered the tabular Q-learning update,
implying tabular Q-learning is a special case of this general parametric update.

Choice of basis functions. There are a wide variety of possible choices for φ, as in
standard basis function regression. Common choices aim to capture some notion of the the
local behavior of Q functions; common choices include tile codings and coarse codings (i.e.
indicator functions for regions of state space), or radial basis functions, which have exponen-
tially declining importance further from their centers. Alternatively, for expressive function
representations, common choices include polynomials and Fourier basis functions. As in
standard basis function regression, domain expertise should be utilized whenever possible in
the design of the features.

Convergence of approximate Q-learning. The combination of off-policy Q-learning
and function approximation is not, in general, guaranteed to converge. We refer the reader
to [SB18] for a collection of counter-examples. In general, the combination of function
approximation, bootstrapping, and off-policy training is referred to as the deadly triad, and
typically results in instability.

Neural Fitted Q-learning and DQN

While we have so far discussed Q-learning using linear regression on nonlinear features, we
will now move to the setting in which the features are learned. Due to their differentiability,
expressiveness, and good empirical performance (especially for image inputs), a common
choice is a neural network. This approach is typically referred to as either neural fitted Q
iteration [Rie05], or as the deep Q network (DQN), [MKS+15]. Given the neural network
parameterization, the squared TD error loss function has the gradient

∇θ`(θ) = −Ex,u,x′∼ρ
[
(c+ γ min

u′∈U
Qθ(x

′,u′)−Qθ(x,u))∇θQθ(x,u)

]
(11.13)
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as for standard fitted Q-learning. The Q function approximation can, using Monte Carlo
approximation of this gradient and backpropagation for neural network optimization, update
the parameters of the neural network.

There are two major non-obvious modifications to standard fitted Q-learning that make
deep Q networks successful: experience replay [Lin93] and lagged Q function updates.

Experience replay and off-policy training. Neural networks trained in a strictly online
fashion, taking gradient steps with respect to the most recent observed input-output pair,
result in unstable training, forgetting, and possible divergence. To avoid this, we turn
to experience replay, in which a history of (x,u, c,x′) transitions is stored. For training, a
minibatch of these transitions is taken from the experience replay buffer, and used to compute
a Monte Carlo estimate of the squared TD error, and then used for gradient descent.

How do we square the logging of old data with the expectation over the distribution
induced by the policy? Is this algorithm on-policy or off-policy? In practice, the entries
in the replay buffer are biased toward more recent samples. Thus, the approach is nei-
ther completely on-policy or off-policy. In practice, design of this replay buffer is based on
heuristics.

Lagged Q updates. We define the target Q function as Q(x′,u′), the inner Q function
within the update, minu′∈U Q(x′,u′). To stabilize the DQN learning, it is necessary to
represent this with a different network from the other Q function that appears in the TD
error equation. We will refer to the parameters of this network as θ′. This network is not
learned independently; instead, it is set to the weights of the other Q network on a lagged
schedule. A typical approach is to set θ′ = θ every k steps, where k is some large constant
(e.g. 1000).

11.2 Policy Gradient and Monte Carlo Policy Improve-

ment

In the previous section we discussed methods that learned Q functions, for which action
selection consisted of greedy optimization. In this section, we will discuss methods that
directly optimize the policy with respect to total expected cost. These methods do not rely
on bootstrapping, unlike Q-learning and SARSA.

We will first discuss Monte Carlo methods in the tabular setting, in which the state
and action space are discrete. This discussion will cover both the policy evaluation and the
improvement setting. Following this, we will discuss the policy gradient approach, which
allows optimization of parameterized policies and will be a key tool in our discussion of
actor-critic methods in the next section. We assume the initial state at the start of each
episode is x0 ∼ p(x0), and that the MDP does not change between episodes.
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Algorithm 7 First-Visit Monte Carlo Policy Evaluation

Require: Policy π.
1: Initialize J(x) arbitrarily for all x ∈ X , empty list Returns(x) for all x ∈ X
2: for each episode, n = 0, . . . , N do
3: Generate rollout τ = (x0,u0, c0, . . . ,xT ,uT , cT )
4: G← 0
5: for t = T, . . . , 0 do
6: G← γG+ ct
7: Ĵ(xt)← G
8: end for
9: Append Ĵ(x) to Returns(x) for all x ∈ X

10: J(x)← average(Returns(x)) for all x ∈ X
11: end for

11.2.1 Monte Carlo Policy Evaluation

Before considering policy improvement, we will discuss the policy evaluation setting, in which
we aim to estimate the value function associated with a fixed policy. We will assume episodic
interaction with the environment, and that the value function is not time varying.

The algorithm is presented in Algorithm 7. Here, G denotes the total return for an
episode. The rollouts (trajectories) may be computed via interaction with the true MDP or
a simulated system. Algorithm 7 shows first-visit evaluation. In this approach, the value for
each state is estimated as the average (over episodes) of the sum of costs from the first time
a state is visited to the end of the episode. This is in contrast to every-visit evaluation, in
which the the sum of costs from each time a state is visited is used to estimate the value.

In addition to Monte Carlo estimation of value functions, we may also perform Monte
Carlo estimation of Q functions. This approach will be useful for model-free policy im-
provement. Monte Carlo Q-function policy estimation proceeds identically to value function
estimation, but replaces the estimation step

Ĵ(xt)← G (11.14)

with a state-action estimation step

Q̂(xt,ut)← G (11.15)

and similarly, the Q function is the average of the returns across episodes. Note that in the
tabular setting, this has a limitation: instead of having to estimate |X | entries, we must now
estimate |X | × |U| entries. Moreover, for a deterministic policy, many state-action pairs will
never be visited. Thus, when used as an inner subroutine in policy improvement, sufficient
exploration will be critical.
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11.2.2 Monte Carlo Policy Improvement

Having constructed an approach for Monte Carlo policy evaluation, we may now consider
policy improvement. Monte Carlo policy improvement is an instantiation of generalized
policy iteration, where the evaluation step is the Q function policy evaluation step described
previously. This is interleaved with a greedy policy improvement step, of the form

π(x)← argminu∈UQ(x,u). (11.16)

These two steps are typically iterated between after every episode. That is, the standard
pipeline is to first, given a policy, rollout on the environment. Given that rollout, the policy
estimation phase may be performed. Following this, policy improvement is performed, and
the loop begins again.

In contrast to standard policy iteration, this approach does not iterate over every state in
the policy evaluation step. Thus, effective policy evaluation relies on sufficient exploration.
A standard approach is to consider soft policies, which have non-zero probability associated
with each action, at each state. Additionally, as time progresses, these policies become less
soft (i.e. put less probability mass on sub-optimal actions) to ensure convergence. A typical
approach is ε-greedy, as discussed in the previous section. Given some technical conditions
on the decay of ε, Monte Carlo policy improvement can be shown to converge to the optimal
policy.

11.2.3 The Likelihood Ratio Trick and REINFORCE

We have so far considered direct policy optimization via Monte Carlo methods in the tab-
ular setting. We will now look at the approximate setting, in which we aim to optimize a
parameterized policy, which we write πθ. We will also consider stochastic policies, which we
will write as πθ(u | x), where πθ(· | x) is a conditional probability density. We will write
the return of the policy as a function of the policy parameters as

G(θ) = Ex0 [Jπθ(x0)] (11.17)

where we now define the value as

Jπ(x) = Eu∼π(·|x),x′∼p(·|x,u)[c(x,u) + γJπ(x′)]. (11.18)

To optimize this policy via gradient descent on the return, we turn to the policy gradient
theorem.

Theorem 11.2.1. Let G(θ) denote the expected return of policy πθ. Let τ = (x0,u0, . . . ,xT ,uT )
denote a finite horizon trajectory generated by the dynamics of the environment and the pol-
icy, with density p(τ | θ). We will write the total cost associated with the trajectory τ as
c(τ). Then,

∇θG(θ) = Eτ∼p(·|θ)[c(τ)
T∑
t=0

∇θ log πθ(ut | xt)] (11.19)
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Proof. The proof proceeds via simple calculus and rearrangement of terms. We will use the
identity

pθ(x)∇θ log pθ(x) = ∇θpθ(x). (11.20)

Given this, we have

∇θG(θ) = ∇θEτ∼p(·|θ)[c(τ)]

= ∇θ
∫
p(τ | θ)c(τ)dτ

=

∫
c(τ)∇θp(τ | θ)dτ

=

∫
c(τ)p(τ | θ)∇θ log p(τ | θ)dτ

= Eτ∼p(·|θ)[c(τ)∇θ log p(τ | θ)]. (11.21)

Note that

p(τ | θ) = p(x0)
T−1∏
k=0

p(xk+1 | uk)πθ(uk | xk),

and thus

log p(τ | θ) = log p(x0) +
T−1∑
k=0

( log p(xk+1 | uk) + log πθ(uk | xk)).

Moreover, note that all the terms in the above are independent of θ, with the exception of
the policy. Thus, we have ∇θ log p(τ | θ) =

∑T−1
k=0 ∇θ log πθ(uk | xk). Plugging this into

(11.21) completes the proof.
By using Monte Carlo estimation of this gradient from experience (as opposed to Monte

Carlo policy evaluation as in the last subsection), we can take (noisy) gradient descent steps
on the total return to optimize the policy from experience. Indeed, note that on-policy
behavior (i.e. acting in the real environment with actions drawn from πθ provides samples
from p(τ | θ).

11.3 Actor-Critic Methods

11.3.1 Variance Reduction

Importance Sampling

Control Variates

11.4 Exploration

11.5 Bibliographic Notes
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Chapter 12

Model-based Reinforcement Learning

12.1 Adaptive and Learning MPC

12.2 Combining Model and Policy Learning

12.3 Bibliographic Notes
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